
FNSS core library
Release 0.8.2

Lorenzo Saino, Cosmin Cocora

Jul 29, 2018

Contents

1 Contents 3
1.1 Architecture . 3
1.2 Install . 4

1.2.1 Quick install . 4
1.2.1.1 Ubuntu (version 12.04+) . 4
1.2.1.2 Other operating systems . 4

1.2.2 Installing from source . 4
1.2.2.1 Source archive file . 5
1.2.2.2 Git repository . 5

1.2.3 Requirements . 5
1.2.3.1 Python . 5
1.2.3.2 Required packages . 5

1.3 API Reference . 6
1.3.1 Classes . 6

1.3.1.1 Topology . 6
1.3.1.2 DirectedTopology . 7
1.3.1.3 DatacenterTopology . 9
1.3.1.4 TrafficMatrix . 11
1.3.1.5 TrafficMatrixSequence . 11
1.3.1.6 EventSchedule . 12

1.3.2 Functions . 12
1.3.2.1 netconfig package . 12
1.3.2.2 traffic package . 27
1.3.2.3 topologies package . 33
1.3.2.4 adapters package . 50

1.3.3 Scripts . 54
1.3.3.1 mn-fnss . 54
1.3.3.2 fnss-troubleshoot . 55

2 Indices and tables 57

Bibliography 59

Python Module Index 61

i

ii

FNSS core library, Release 0.8.2

This is the documentation of the FNSS core library. It is a Python library providing a set of features allowing to
simplify the setup of a network experiment. These features include the ability to:

• Parse a topology from a dataset, a topology generator or generate it according to a number of synthetic models

• Apply link capacity, link weights, link delays and buffer sizes

• Deploy application stacks

• Generate traffic matrices

• Generate event schedules

The core library in addition to the features listed above, contains adapters to export generated scenarios to a the
following network simulators or emulators: ns-2, Mininet, Omnet++, jFed and Autonetkit. Generated experiment
scenarios (i.e. topologies, event schedules and traffic matrices) can be saved into XML files and then imported by
libraries written in other languages. Currently, FNSS provides generic Java and C++ libraries as well as a C++ library
specific for the ns-3 simulator. These libraries can be downloaded from the FNSS website.

The FNSS core library is released under the terms of the BSD license.

If you use FNSS for your paper, please cite the following publication:

Lorenzo Saino, Cosmin Cocora and George Pavlou, A Toolchain for Symplifying Network Simulation
Setup, in Proceedings of the 6th International ICST Conference on Simulation Tools and Techniques
(SIMUTOOLS ‘13), Cannes, France, March 2013

The BibTeX entry is:

@inproceedings{fnss,
author = {Saino, Lorenzo and Cocora, Cosmin and Pavlou, George},
title = {A Toolchain for Simplifying Network Simulation Setup},
booktitle = {Proceedings of the 6th International ICST Conference on Simulation

→˓Tools and Techniques},
series = {SIMUTOOLS '13},
year = {2013},
location = {Cannes, France},
numpages = {10},
publisher = {ICST (Institute for Computer Sciences, Social-Informatics and

→˓Telecommunications Engineering)},
address = {ICST, Brussels, Belgium, Belgium},

}

Contents 1

http://www.isi.edu/nsnam/ns/
http://www.mininet.org/
http://www.omnetpp.org/
http://jfed.iminds.be/
http://www.autonetkit.org/
http://www.nsnam.org/
http://fnss.github.io/
https://raw.github.com/fnss/fnss/master/core/LICENSE.txt
http://www.ee.ucl.ac.uk/~lsaino/publications/fnss-simutools13.pdf
http://www.ee.ucl.ac.uk/~lsaino/publications/fnss-simutools13.pdf

FNSS core library, Release 0.8.2

2 Contents

CHAPTER 1

Contents

1.1 Architecture

The Python core library is designed following a modular approach.

All functionalities are splitted in four main packages:

• adapters: contains functions for exporting FNSS objects to target simulators or emulators. Cur-
rently, this package includes functions for exporting FNSS objects to Mininet, ns-2, Omnet++, jFed
<http://jfed.iminds.be/>_ and AutoNetKit.

• topologies: contains all functions and classes for parsing or synthetically generating a network topology.
It also contains functions to read and write topology objects from/to an XML file. The conversion of such
objects to XML files is needed to make topology available for the Java and C++ API and the ns-3 adapter.

• netconfig: contains all functions for configuring a network topology. Such configuration include setting
link capacities, delays and weights, set buffer sizes and deploy protocol stacks and applications on nodes.

• traffic: contains all functions and classes for synthetically generating event schedules and traffic matrices.

In addition, the library also comprises a set of classes to model specific entities. These classes are:

• Topology: a base undirected topology. Comprises methods for adding, editing and removing nodes and
links. This class inherits from NetworkX Graph class. As a result, all graph algorithms and visualization
tools provided by NetworkX can be used on Topology objects as well.

• DirectedTopology: a base directed topology. It shares most of the code of the Topology class but in this
class links are directed. Similarly to the Topology class, this class inherits from NetworkX DiGraph class.

• DatacenterTopology: a datacenter topology. It inherits from the Topology class and comprises additional
methods relevant only for datacenter topologies.

• TrafficMatrix: a traffic matrix, capturing the average traffic on a network at a specific point in time.

• TrafficMatrixSequence: a sequence of traffic matrices, capturing the evolution of traffic on a network
over a period of time.

• EventSchedule: a schedule of events to be simulated.

3

http://www.mininet.org
http://www.isi.edu/nsnam/ns/
http://www.omnetpp.org/
http://www.autonetkit.org
http://www.nsnam.org/
http://networkx.github.io
http://networkx.github.io

FNSS core library, Release 0.8.2

In order to make the simulation setup information created with FNSS core library (topology, traffic, events) available
to the desired target simulator, FNSS provides the capability to export such information to XML files. These XML
files can then be read by the Java, C++ or ns-3 libraries. More specifically, the following objects can be saved to XML
files:

• Topology, DirectedTopology, DatacenterTopology and any potential subclasses can be written to XML files
with the function write_topology.

• TrafficMatrix, TrafficMatrixSequence and any potential subclasses can be written to XML files with the
function write_traffic_matrix.

• EventSchedule and any potential subclasses can be written to XML files with the function
write_event_schedule.

1.2 Install

1.2.1 Quick install

1.2.1.1 Ubuntu (version 12.04+)

If you use Ubuntu, you can install the FNSS core library along with the Python interpreter and all required dependen-
cies by running the following script:

$ curl -L https://github.com/fnss/fnss/raw/master/core/ubuntu_install.sh | sh

You need superuser privileges to run this script.

1.2.1.2 Other operating systems

The easiest way to install the core Python library is to download it and install it from the Python Package Index. To do
so, you must have Python (version >= 2.7) installed on your machine and either pip or easy_install.

To install the FNSS core library using easy_install open a command shell and type:

$ easy_install fnss

If you use pip, type instead:

$ pip fnss

Depending on the configuration of your machine you may need to run pip or easy_install as superuser. Whether you
use pip or easy_install, the commands reported above will download the latest version of the FNSS core library and
install it on your machine together with all required dependencies.

1.2.2 Installing from source

You can install from source by downloading a source archive file (tar.gz or zip) from the FNSS website or by checking
out the source files from the GitHub repository.

4 Chapter 1. Contents

http://fnss.github.io
http://www.github.com/fnss/fnss

FNSS core library, Release 0.8.2

1.2.2.1 Source archive file

1. Download the source (tar.gz or zip file) from http://fnss.github.io

2. Unpack, open a command shell and move to the main directory of the core library (it should have the file
setup.py).

3. Run this instruction to build and install:

$ python setup.py install

1.2.2.2 Git repository

1. Clone the FNSS repostitory:

$ git clone https://github.com/fnss/fnss.git

2. Change directory to fnss/core:

$ cd fnss/core

3. Run:

$ python setup.py install

If you don’t have permission to install software on your system, you can install into another directory using the –user,
–prefix, or –home flags to setup.py.

For example:

$ python setup.py install --prefix=/home/username/python

or:

$ python setup.py install --home=~

or:

$ python setup.py install --user

If you didn’t install in the standard Python site-packages directory you will need to set your PYTHONPATH variable
to the alternate location. See http://docs.python.org/inst/search-path.html for further details.

1.2.3 Requirements

1.2.3.1 Python

To use FNSS you need Python version 2.7 or later. FNSS fully supports Python 3

1.2.3.2 Required packages

The following packages are needed by FNSS to provide core functions.

1.2. Install 5

http://fnss.github.io
http://docs.python.org/inst/search-path.html

FNSS core library, Release 0.8.2

NetworkX (version >= 1.6)

NetworkX is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of
complex networks.

• Download: http://networkx.github.io

NumPy (version >= 1.4)

Provides matrix representation of graphs and is used in some graph algorithms for high-performance matrix computa-
tions.

• Download: http://scipy.org/Download

Mako (version >= 0.4)

It is a templating engine used to export FNSS topologies.

• Download: http://www.makotemplates.org/download.html

1.3 API Reference

1.3.1 Classes

1.3.1.1 Topology

class Topology(data=None, name=”, **kwargs)
Base class for undirected topology

Attributes

name

Methods

add_cycle(nodes, **attr) Add a cycle.
add_edge(u, v[, attr_dict]) Add an edge between u and v.
add_edges_from(ebunch[, attr_dict]) Add all the edges in ebunch.
add_node(n[, attr_dict]) Add a single node n and update node attributes.
add_nodes_from(nodes, **attr) Add multiple nodes.
add_path(nodes, **attr) Add a path.
add_star(nodes, **attr) Add a star.
add_weighted_edges_from(ebunch[,
weight])

Add all the edges in ebunch as weighted edges with
specified weights.

adjacency_iter() Return an iterator of (node, adjacency dict) tuples for
all nodes.

adjacency_list() Return an adjacency list representation of the graph.
adjlist_dict_factory alias of __builtin__.dict

Continued on next page

6 Chapter 1. Contents

http://networkx.github.io
http://scipy.org/Download
http://www.makotemplates.org/download.html

FNSS core library, Release 0.8.2

Table 1 – continued from previous page
applications() Return a dictionary of all applications deployed,

keyed by node
buffers() Return a dictionary of all buffer sizes, keyed by in-

terface
capacities() Return a dictionary of all link capacities, keyed by

link
clear() Remove all nodes and edges from the graph.
copy() Return a copy of the topology.
degree([nbunch, weight]) Return the degree of a node or nodes.
degree_iter([nbunch, weight]) Return an iterator for (node, degree).
delays() Return a dictionary of all link delays, keyed by link
edge_attr_dict_factory alias of __builtin__.dict
edges([nbunch, data, default]) Return a list of edges.
edges_iter([nbunch, data, default]) Return an iterator over the edges.
get_edge_data(u, v[, default]) Return the attribute dictionary associated with edge

(u,v).
has_edge(u, v) Return True if the edge (u,v) is in the graph.
has_node(n) Return True if the graph contains the node n.
is_directed() Return True if graph is directed, False otherwise.
is_multigraph() Return True if graph is a multigraph, False other-

wise.
nbunch_iter([nbunch]) Return an iterator of nodes contained in nbunch that

are also in the graph.
neighbors(n) Return a list of the nodes connected to the node n.
neighbors_iter(n) Return an iterator over all neighbors of node n.
node_dict_factory alias of __builtin__.dict
nodes([data]) Return a list of the nodes in the graph.
nodes_iter([data]) Return an iterator over the nodes.
nodes_with_selfloops() Return a list of nodes with self loops.
number_of_edges([u, v]) Return the number of edges between two nodes.
number_of_nodes() Return the number of nodes in the graph.
number_of_selfloops() Return the number of selfloop edges.
order() Return the number of nodes in the graph.
remove_edge(u, v) Remove the edge between u and v.
remove_edges_from(ebunch) Remove all edges specified in ebunch.
remove_node(n) Remove node n.
remove_nodes_from(nodes) Remove multiple nodes.
selfloop_edges([data, default]) Return a list of selfloop edges.
size([weight]) Return the number of edges.
stacks() Return a dictionary of all node stacks, keyed by node
subgraph(nbunch) Return the subgraph induced on nodes in nbunch.
to_directed() Return a directed representation of the topology.
to_undirected() Return an undirected copy of the topology.
weights() Return a dictionary of all link weights, keyed by link

1.3.1.2 DirectedTopology

class DirectedTopology(data=None, name=”, **kwargs)
Base class for directed topology

1.3. API Reference 7

FNSS core library, Release 0.8.2

Attributes

name

Methods

add_cycle(nodes, **attr) Add a cycle.
add_edge(u, v[, attr_dict]) Add an edge between u and v.
add_edges_from(ebunch[, attr_dict]) Add all the edges in ebunch.
add_node(n[, attr_dict]) Add a single node n and update node attributes.
add_nodes_from(nodes, **attr) Add multiple nodes.
add_path(nodes, **attr) Add a path.
add_star(nodes, **attr) Add a star.
add_weighted_edges_from(ebunch[,
weight])

Add all the edges in ebunch as weighted edges with
specified weights.

adjacency_iter() Return an iterator of (node, adjacency dict) tuples for
all nodes.

adjacency_list() Return an adjacency list representation of the graph.
adjlist_dict_factory alias of __builtin__.dict
applications() Return a dictionary of all applications deployed,

keyed by node
buffers() Return a dictionary of all buffer sizes, keyed by in-

terface
capacities() Return a dictionary of all link capacities, keyed by

link
clear() Remove all nodes and edges from the graph.
copy() Return a copy of the topology.
degree([nbunch, weight]) Return the degree of a node or nodes.
degree_iter([nbunch, weight]) Return an iterator for (node, degree).
delays() Return a dictionary of all link delays, keyed by link
edge_attr_dict_factory alias of __builtin__.dict
edges([nbunch, data, default]) Return a list of edges.
edges_iter([nbunch, data, default]) Return an iterator over the edges.
get_edge_data(u, v[, default]) Return the attribute dictionary associated with edge

(u,v).
has_edge(u, v) Return True if the edge (u,v) is in the graph.
has_node(n) Return True if the graph contains the node n.
has_predecessor(u, v) Return True if node u has predecessor v.
has_successor(u, v) Return True if node u has successor v.
in_degree([nbunch, weight]) Return the in-degree of a node or nodes.
in_degree_iter([nbunch, weight]) Return an iterator for (node, in-degree).
in_edges([nbunch, data]) Return a list of the incoming edges.
in_edges_iter([nbunch, data]) Return an iterator over the incoming edges.
is_directed() Return True if graph is directed, False otherwise.
is_multigraph() Return True if graph is a multigraph, False other-

wise.
nbunch_iter([nbunch]) Return an iterator of nodes contained in nbunch that

are also in the graph.
neighbors(n) Return a list of successor nodes of n.
neighbors_iter(n) Return an iterator over successor nodes of n.

Continued on next page

8 Chapter 1. Contents

FNSS core library, Release 0.8.2

Table 3 – continued from previous page
node_dict_factory alias of __builtin__.dict
nodes([data]) Return a list of the nodes in the graph.
nodes_iter([data]) Return an iterator over the nodes.
nodes_with_selfloops() Return a list of nodes with self loops.
number_of_edges([u, v]) Return the number of edges between two nodes.
number_of_nodes() Return the number of nodes in the graph.
number_of_selfloops() Return the number of selfloop edges.
order() Return the number of nodes in the graph.
out_degree([nbunch, weight]) Return the out-degree of a node or nodes.
out_degree_iter([nbunch, weight]) Return an iterator for (node, out-degree).
out_edges([nbunch, data, default]) Return a list of edges.
out_edges_iter([nbunch, data, default]) Return an iterator over the edges.
predecessors(n) Return a list of predecessor nodes of n.
predecessors_iter(n) Return an iterator over predecessor nodes of n.
remove_edge(u, v) Remove the edge between u and v.
remove_edges_from(ebunch) Remove all edges specified in ebunch.
remove_node(n) Remove node n.
remove_nodes_from(nbunch) Remove multiple nodes.
reverse([copy]) Return the reverse of the graph.
selfloop_edges([data, default]) Return a list of selfloop edges.
size([weight]) Return the number of edges.
stacks() Return a dictionary of all node stacks, keyed by node
subgraph(nbunch) Return the subgraph induced on nodes in nbunch.
successors(n) Return a list of successor nodes of n.
successors_iter(n) Return an iterator over successor nodes of n.
to_directed() Return a directed representation of the topology.
to_undirected() Return an undirected copy of the topology.
weights() Return a dictionary of all link weights, keyed by link

1.3.1.3 DatacenterTopology

class DatacenterTopology(data=None, name=”, **kwargs)
Represent a datacenter topology

Attributes

name

Methods

add_cycle(nodes, **attr) Add a cycle.
add_edge(u, v[, attr_dict]) Add an edge between u and v.
add_edges_from(ebunch[, attr_dict]) Add all the edges in ebunch.
add_node(n[, attr_dict]) Add a single node n and update node attributes.
add_nodes_from(nodes, **attr) Add multiple nodes.
add_path(nodes, **attr) Add a path.
add_star(nodes, **attr) Add a star.

Continued on next page

1.3. API Reference 9

FNSS core library, Release 0.8.2

Table 5 – continued from previous page
add_weighted_edges_from(ebunch[,
weight])

Add all the edges in ebunch as weighted edges with
specified weights.

adjacency_iter() Return an iterator of (node, adjacency dict) tuples for
all nodes.

adjacency_list() Return an adjacency list representation of the graph.
adjlist_dict_factory alias of __builtin__.dict
applications() Return a dictionary of all applications deployed,

keyed by node
buffers() Return a dictionary of all buffer sizes, keyed by in-

terface
capacities() Return a dictionary of all link capacities, keyed by

link
clear() Remove all nodes and edges from the graph.
copy() Return a copy of the topology.
degree([nbunch, weight]) Return the degree of a node or nodes.
degree_iter([nbunch, weight]) Return an iterator for (node, degree).
delays() Return a dictionary of all link delays, keyed by link
edge_attr_dict_factory alias of __builtin__.dict
edges([nbunch, data, default]) Return a list of edges.
edges_iter([nbunch, data, default]) Return an iterator over the edges.
get_edge_data(u, v[, default]) Return the attribute dictionary associated with edge

(u,v).
has_edge(u, v) Return True if the edge (u,v) is in the graph.
has_node(n) Return True if the graph contains the node n.
hosts() Return the list of host nodes in the topology
is_directed() Return True if graph is directed, False otherwise.
is_multigraph() Return True if graph is a multigraph, False other-

wise.
nbunch_iter([nbunch]) Return an iterator of nodes contained in nbunch that

are also in the graph.
neighbors(n) Return a list of the nodes connected to the node n.
neighbors_iter(n) Return an iterator over all neighbors of node n.
node_dict_factory alias of __builtin__.dict
nodes([data]) Return a list of the nodes in the graph.
nodes_iter([data]) Return an iterator over the nodes.
nodes_with_selfloops() Return a list of nodes with self loops.
number_of_edges([u, v]) Return the number of edges between two nodes.
number_of_hosts() Return the number of hosts in the topology
number_of_nodes() Return the number of nodes in the graph.
number_of_selfloops() Return the number of selfloop edges.
number_of_switches() Return the number of switches in the topology
order() Return the number of nodes in the graph.
remove_edge(u, v) Remove the edge between u and v.
remove_edges_from(ebunch) Remove all edges specified in ebunch.
remove_node(n) Remove node n.
remove_nodes_from(nodes) Remove multiple nodes.
selfloop_edges([data, default]) Return a list of selfloop edges.
size([weight]) Return the number of edges.
stacks() Return a dictionary of all node stacks, keyed by node
subgraph(nbunch) Return the subgraph induced on nodes in nbunch.
switches() Return the list of switch nodes in the topology

Continued on next page

10 Chapter 1. Contents

FNSS core library, Release 0.8.2

Table 5 – continued from previous page
to_directed() Return a directed representation of the topology.
to_undirected() Return an undirected copy of the topology.
weights() Return a dictionary of all link weights, keyed by link

1.3.1.4 TrafficMatrix

class TrafficMatrix(volume_unit=’Mbps’, flows=None)
Class representing a single traffic matrix.

It simply contains a set of traffic volumes being exchanged between origin-destination pairs

Parameters

volume_unit [str] The unit in which traffic volumes are expressed

flows [dict, optional] The traffic volumes or the matrix, keyed by origin-destination pair. The
origin-destination pair is a tuple whose two elements are respectively the identifier of the
origin and destination nodes and volumes are all expressed in the same unit

Methods

add_flow(origin, destination, volume) Add a flow to the traffic matrix
flows() Return the flows of the traffic matrix
od_pairs() Return all OD pairs of the traffic matrix
pop_flow(origin, destination) Pop a flow from the traffic matrix and return the vol-

ume of the flow removed.

1.3.1.5 TrafficMatrixSequence

class TrafficMatrixSequence(interval=None, t_unit=’min’)
Class representing a sequence of traffic matrices.

Parameters

interval [float or int, optional] The time interval elapsed between subsequent traffic matrices of
the sequence

t_unit [str, optional] The unit of the interval value (e.g. ‘sec’ or ‘min’)

Methods

append(tm) Append a traffic matrix at the end of the sequence
get(i) Return a specific traffic matrix in a specific position

of the sequence
insert(i, tm) Insert a traffic matrix in the sequence at a specified

position
Continued on next page

1.3. API Reference 11

FNSS core library, Release 0.8.2

Table 9 – continued from previous page
pop(i) Removes the traffic matrix in a specific position of

the sequence

1.3.1.6 EventSchedule

class EventSchedule(t_start=0, t_unit=’ms’)
Class representing an event schedule. This class is simply a wrapper for a list of events.

Methods

add(time, event[, absolute_time]) Adds an event to the schedule.
add_schedule(event_schedule) Merge with another event schedule.
events_between(t_start, t_end) Return an event schedule comprising all events

scheduled between a start time (included) and an end
time (excluded).

number_of_events() Return the number of events in the schedule
pop(i) Remove from the schedule the event in a specific po-

sition

1.3.2 Functions

1.3.2.1 netconfig package

buffers module

Function to assign and manipulate buffer sizes of network interfaces.

clear_buffer_sizes(topology) Remove all buffer sizes from the topology.
get_buffer_sizes(topology) Returns all the buffer sizes.
set_buffer_sizes_bw_delay_prod(topology[,
. . .])

Assign a buffer sizes proportionally to the product of
link bandwidth and average network RTT.

set_buffer_sizes_constant(topology,
buffer_size)

Assign a constant buffer size to all selected interfaces

set_buffer_sizes_link_bandwidth(topology[,
. . .])

Assign a buffer sizes proportionally to the bandwidth of
the interface on which the flush.

fnss.netconfig.buffers.clear_buffer_sizes

clear_buffer_sizes(topology)
Remove all buffer sizes from the topology.

Parameters

topology [Topology or DirectedTopology] The topology whose buffer sizes are cleared

12 Chapter 1. Contents

FNSS core library, Release 0.8.2

fnss.netconfig.buffers.get_buffer_sizes

get_buffer_sizes(topology)
Returns all the buffer sizes.

Parameters

topology [Topology or DirectedTopology]

Returns

buffer_sizes [dict] Dictionary of buffer sizes keyed by (u, v) tuple. The key (u, v) represents a
network interface where u is the node on which the interface is located and (u, v) is the link
to which the buffer flushes

Examples

>>> import fnss
>>> topology = fnss.Topology()
>>> topology.add_path([1, 2, 3])
>>> fnss.set_buffer_sizes_constant(topology, buffer_size=10)
>>> buffer = fnss.get_buffer_sizes(topology)
>>> buffer[(1,2)]
10

fnss.netconfig.buffers.set_buffer_sizes_bw_delay_prod

set_buffer_sizes_bw_delay_prod(topology, buffer_unit=’bytes’, packet_size=1500)
Assign a buffer sizes proportionally to the product of link bandwidth and average network RTT. This is a rule of
thumb according to which the buffers of Internet routers are generally configured.

Parameters

topology [Topology or DirectedTopology] The topology on which delays are applied.

buffer_unit [string] The unit of buffer sizes. Supported units are: bytes and packets

packet_size [int, optional] The average packet size (in bytes). It used only if packets is selected
as buffer size to properly calculate buffer sizes given bandwidth and delay values.

Examples

>>> import fnss
>>> topology = fnss.erdos_renyi_topology(50, 0.2)
>>> fnss.set_capacities_constant(topology, 10, 'Mbps')
>>> fnss.set_delays_constant(topology, 2, 'ms')
>>> fnss.set_buffer_sizes_bw_delay_prod(topology)

fnss.netconfig.buffers.set_buffer_sizes_constant

set_buffer_sizes_constant(topology, buffer_size, buffer_unit=’bytes’, interfaces=None)
Assign a constant buffer size to all selected interfaces

Parameters

1.3. API Reference 13

FNSS core library, Release 0.8.2

topology [Topology or DirectedTopology] The topology on which buffer sizes are applied.

buffer_size [int] The constant buffer_size to be applied to all interface

buffer_unit [string, unit] The unit of buffer sizes. Supported units are: bytes and packets

interfaces [iterable container of tuples, optional] Iterable container of selected interfaces on
which buffer sizes are applied. An interface is defined by the tuple (u,v) where u is the node
on which the interface is located and (u,v) is the link to which the buffer flushes.

Examples

>>> import fnss
>>> topology = fnss.Topology()
>>> topology.add_path([1, 2, 4, 5, 8])
>>> fnss.set_buffer_sizes_constant(topology, 100000, buffer_unit='bytes', ...
→˓interfaces=[(1,2), (5,8), (4,5)])

fnss.netconfig.buffers.set_buffer_sizes_link_bandwidth

set_buffer_sizes_link_bandwidth(topology, k=1.0, default_size=None, buffer_unit=’bytes’,
packet_size=1500)

Assign a buffer sizes proportionally to the bandwidth of the interface on which the flush. In particularly, the
buffer size will be equal to 𝑘𝑖𝑚𝑒𝑠𝐶, where 𝐶 is the capacity of the link in bps.

This assignment is equal to the bandwidth-delay product if 𝑘 is the average RTT in seconds.

To use this function, all links of the topology must have a capacity attribute. If the length of a link cannot be
determined, it is applied the delay equal default_delay if specified, otherwise an error is returned.

Parameters

topology [Topology or DirectedTopology] The topology on which delays are applied.

k [float, optional] The multiplicative constant applied to capacity to derive buffer size

default_size [float, optional] The buffer size to be applied to interfaces whose speed is un-
known. If it is None and at least one link does not have a capacity attribute, return an error

buffer_unit [string, unit] The unit of buffer sizes. Supported units are: bytes and packets

packet_size [int, optional] The average packet size (in bytes). It used only if packets is selected
as buffer size to properly calculate buffer sizes given bandwidth and delay values.

Examples

>>> import fnss
>>> topology = fnss.erdos_renyi_topology(50, 0.1)
>>> fnss.set_capacities_constant(topology, 10, 'Mbps')
>>> fnss.set_delays_constant(topology, 2, 'ms')
>>> fnss.set_buffer_sizes_link_bandwidth(topology, k=1.0)

14 Chapter 1. Contents

FNSS core library, Release 0.8.2

capacities module

Functions to assign and manipulate link capacities of a topology.

Link capacities can be assigned either deterministically or randomly, according to various models.

clear_capacities(topology) Remove all capacities from the topology.
get_capacities(topology) Returns a dictionary with all link capacities.
set_capacities_betweenness_gravity(topology,
. . .)

Set link capacities proportionally to the product of the
betweenness centralities of the two end-points of the
link

set_capacities_communicability_gravity(. . .)Set link capacities proportionally to the product of the
communicability centralities of the two end-points of
the link

set_capacities_constant(topology, capacity) Set constant link capacities
set_capacities_degree_gravity(topology,
. . .)

Set link capacities proportionally to the product of the
degrees of the two end-points of the link

set_capacities_edge_betweenness(topology,
. . .)

Set link capacities proportionally to edge betweenness
centrality of the link.

set_capacities_edge_communicability(. . . [,
. . .])

Set link capacities proportionally to edge communica-
bility centrality of the link.

set_capacities_eigenvector_gravity(topology,
. . .)

Set link capacities proportionally to the product of the
eigenvector centralities of the two end-points of the link

set_capacities_pagerank_gravity(topology,
. . .)

Set link capacities proportionally to the product of the
Pagerank centralities of the two end-points of the link

set_capacities_random(topology, capac-
ity_pdf)

Set random link capacities according to a given proba-
bility density function

set_capacities_random_power_law(topology,
. . .)

Set random link capacities according to a power-law
probability density function.

set_capacities_random_uniform(topology,
. . .)

Set random link capacities according to a uniform prob-
ability density function.

set_capacities_random_zipf(topology,
capacities)

Set random link capacities according to a Zipf probabil-
ity density function.

set_capacities_random_zipf_mandelbrot(. . . [,
. . .])

Set random link capacities according to a Zipf-
Mandelbrot probability density function.

fnss.netconfig.capacities.clear_capacities

clear_capacities(topology)
Remove all capacities from the topology.

Parameters

topology [Topology]

fnss.netconfig.capacities.get_capacities

get_capacities(topology)
Returns a dictionary with all link capacities.

Parameters

topology [Topology] The topology whose link delays are requested

1.3. API Reference 15

FNSS core library, Release 0.8.2

Returns

capacities [dict] Dictionary of link capacities keyed by link.

Examples

>>> import fnss
>>> topology = fnss.Topology()
>>> topology.add_path([1,2,3])
>>> fnss.set_capacities_constant(topology, 10, 'Mbps')
>>> capacity = get_capacities(topology)
>>> capacity[(1,2)]
10

fnss.netconfig.capacities.set_capacities_betweenness_gravity

set_capacities_betweenness_gravity(topology, capacities, capacity_unit=’Mbps’,
weighted=True)

Set link capacities proportionally to the product of the betweenness centralities of the two end-points of the link

Parameters

topology [Topology] The topology to which link capacities will be set

capacities [list] A list of all possible capacity values

capacity_unit [str, optional] The unit in which capacity value is expressed (e.g. Mbps, Gbps
etc..)

weighted [bool, optional] Indicate whether link weights need to be used to compute shortest
paths. If links do not have link weights or this parameter is False, shortest paths are calcu-
lated based on hop count.

fnss.netconfig.capacities.set_capacities_communicability_gravity

set_capacities_communicability_gravity(topology, capacities, capacity_unit=’Mbps’)
Set link capacities proportionally to the product of the communicability centralities of the two end-points of the
link

Parameters

topology [Topology] The topology to which link capacities will be set

capacities [list] A list of all possible capacity values

capacity_unit [str, optional] The unit in which capacity value is expressed (e.g. Mbps, Gbps
etc..)

fnss.netconfig.capacities.set_capacities_constant

set_capacities_constant(topology, capacity, capacity_unit=’Mbps’, links=None)
Set constant link capacities

Parameters

topology [Topology] The topology to which link capacities will be set

16 Chapter 1. Contents

FNSS core library, Release 0.8.2

capacity [float] The value of capacity to set

links [iterable, optional] Iterable container of links, represented as (u, v) tuples to which capac-
ity will be set. If None or not specified, the capacity will be applied to all links.

capacity_unit [str, optional] The unit in which capacity value is expressed (e.g. Mbps, Gbps
etc..)

Examples

>>> import fnss
>>> topology = fnss.erdos_renyi_topology(50, 0.1)
>>> fnss.set_capacities_constant(topology, 10, 'Mbps')

fnss.netconfig.capacities.set_capacities_degree_gravity

set_capacities_degree_gravity(topology, capacities, capacity_unit=’Mbps’)
Set link capacities proportionally to the product of the degrees of the two end-points of the link

Parameters

topology [Topology] The topology to which link capacities will be set

capacities [list] A list of all possible capacity values

capacity_unit [str, optional] The unit in which capacity value is expressed (e.g. Mbps, Gbps
etc..)

fnss.netconfig.capacities.set_capacities_edge_betweenness

set_capacities_edge_betweenness(topology, capacities, capacity_unit=’Mbps’, weighted=True)
Set link capacities proportionally to edge betweenness centrality of the link.

Parameters

topology [Topology] The topology to which link capacities will be set

capacities [list] A list of all possible capacity values

capacity_unit [str, optional] The unit in which capacity value is expressed (e.g. Mbps, Gbps
etc..)

weighted [bool, optional] Indicate whether link weights need to be used to compute shortest
paths. If links do not have link weights or this parameter is False, shortest paths are calcu-
lated based on hop count.

fnss.netconfig.capacities.set_capacities_edge_communicability

set_capacities_edge_communicability(topology, capacities, capacity_unit=’Mbps’)
Set link capacities proportionally to edge communicability centrality of the link.

Parameters

topology [Topology] The topology to which link capacities will be set

capacities [list] A list of all possible capacity values

1.3. API Reference 17

FNSS core library, Release 0.8.2

capacity_unit [str, optional] The unit in which capacity value is expressed (e.g. Mbps, Gbps
etc..)

fnss.netconfig.capacities.set_capacities_eigenvector_gravity

set_capacities_eigenvector_gravity(topology, capacities, capacity_unit=’Mbps’,
max_iter=1000)

Set link capacities proportionally to the product of the eigenvector centralities of the two end-points of the link

Parameters

topology [Topology] The topology to which link capacities will be set

capacities [list] A list of all possible capacity values

capacity_unit [str, optional] The unit in which capacity value is expressed (e.g. Mbps, Gbps
etc..)

max_iter [int, optional] The max number of iteration of the algorithm allowed. If a solution is
not found within this period

Raises

RuntimeError [if the algorithm does not converge in max_iter iterations]

fnss.netconfig.capacities.set_capacities_pagerank_gravity

set_capacities_pagerank_gravity(topology, capacities, capacity_unit=’Mbps’, alpha=0.85,
weight=None)

Set link capacities proportionally to the product of the Pagerank centralities of the two end-points of the link

Parameters

topology [Topology] The topology to which link capacities will be set

capacities [list] A list of all possible capacity values

capacity_unit [str, optional] The unit in which capacity value is expressed (e.g. Mbps, Gbps
etc..)

alpha [float, optional] The apha parameter of the PageRank algorithm

weight [str, optional] The name of the link attribute to use for the PageRank algorithm. Valid at-
tributes include capacity delay and weight. If None, all links are assigned the same weight.

fnss.netconfig.capacities.set_capacities_random

set_capacities_random(topology, capacity_pdf, capacity_unit=’Mbps’)
Set random link capacities according to a given probability density function

Parameters

topology [Topology] The topology to which link capacities will be set

capacity_pdf [dict] A dictionary representing the probability that a capacity value is assigned
to a link

capacity_unit [str, optional] The unit in which capacity value is expressed (e.g. Mbps, Gbps
etc..)

18 Chapter 1. Contents

FNSS core library, Release 0.8.2

links [list, optional] List of links, represented as (u, v) tuples to which capacity will be set. If
None or not specified, the capacity will be applied to all links.

Examples

>>> import fnss
>>> topology = fnss.erdos_renyi_topology(50, 0.1)
>>> pdf = {10: 0.5, 100: 0.2, 1000: 0.3}
>>> fnss.set_capacities_constant(topology, pdf, 'Mbps')

fnss.netconfig.capacities.set_capacities_random_power_law

set_capacities_random_power_law(topology, capacities, capacity_unit=’Mbps’, alpha=1.1)
Set random link capacities according to a power-law probability density function.

The probability that a capacity 𝑐𝑖 is assigned to a link is:

𝑝(𝑐𝑖) =
𝑐𝑖

−𝛼∑︀
𝑐𝑘∈𝐶 𝑐𝑘−𝛼

.

Where 𝐶 is the set of allowed capacity, i.e. the capacities argument

Note that this capacity assignment differs from set_capacities_random_zipf because, while in Zipf
assignment the power law relationship is between the rank of a capacity and the probability of being assigned
to a link, in this assignment, the power law is between the value of the capacity and the probability of being
assigned to a link.

Parameters

topology [Topology] The topology to which link capacities will be set

capacities [list] A list of all possible capacity values

capacity_unit [str, optional] The unit in which capacity value is expressed (e.g. Mbps, Gbps
etc..)

fnss.netconfig.capacities.set_capacities_random_uniform

set_capacities_random_uniform(topology, capacities, capacity_unit=’Mbps’)
Set random link capacities according to a uniform probability density function.

Parameters

topology [Topology] The topology to which link capacities will be set

capacities [list] A list of all possible capacity values

capacity_unit [str, optional] The unit in which capacity value is expressed (e.g. Mbps, Gbps
etc..)

fnss.netconfig.capacities.set_capacities_random_zipf

set_capacities_random_zipf(topology, capacities, capacity_unit=’Mbps’, alpha=1.1, re-
verse=False)

Set random link capacities according to a Zipf probability density function.

1.3. API Reference 19

FNSS core library, Release 0.8.2

The same objective can be achieved by invoking the function set_capacities_random_zipf_mandlebrot
with parameter q set to 0.

This capacity allocation consists in the following steps:

1. All capacities are sorted in descending or order (or ascending if reverse is True)

2. The i-th value of the sorted capacities list is then assigned to a link with probability

𝑝(𝑖) =
1/𝑖𝛼∑︀𝑁
𝑖=1 1/𝑖𝛼

.

Parameters

topology [Topology] The topology to which link capacities will be set

capacities [list] A list of all possible capacity values

capacity_unit [str, optional] The unit in which capacity value is expressed (e.g. Mbps, Gbps
etc..)

alpha [float, default 1.1] The :math‘lpha‘ parameter of the Zipf density function

reverse [bool, optional] If False, lower capacity links are the most frequent, if True, higher
capacity links are more frequent

fnss.netconfig.capacities.set_capacities_random_zipf_mandelbrot

set_capacities_random_zipf_mandelbrot(topology, capacities, capacity_unit=’Mbps’, al-
pha=1.1, q=0.0, reverse=False)

Set random link capacities according to a Zipf-Mandelbrot probability density function.

This capacity allocation consists in the following steps:

1. All capacities are sorted in descending or order (or ascending if reverse is True)

2. The i-th value of the sorted capacities list is then assigned to a link with probability

𝑝(𝑖) =
1/(𝑖 + 𝑞)𝛼∑︀𝑁
𝑖=1 1/(𝑖 + 𝑞)𝛼

.

Parameters

topology [Topology] The topology to which link capacities will be set

capacities [list] A list of all possible capacity values

capacity_unit [str, optional] The unit in which capacity value is expressed (e.g. Mbps, Gbps
etc..)

alpha [float, default 1.1] The :math‘lpha‘ parameter of the Zipf-Mandlebrot density function

q [float, default 0] The :math‘q‘ parameter of the Zipf-Mandlebrot density function

reverse [bool, optional] If False, lower capacity links are the most frequent, if True, higher
capacity links are more frequent

delays module

Functions to assign and manipulate link delays.

20 Chapter 1. Contents

FNSS core library, Release 0.8.2

clear_delays(topology) Remove all delays from the topology.
get_delays(topology) Returns all the delays.
set_delays_constant(topology[, delay, . . .]) Assign a constant delay to all selected links
set_delays_geo_distance(topology, spe-
cific_delay)

Assign a delay to all selected links equal to the product
of link length and specific delay.

fnss.netconfig.delays.clear_delays

clear_delays(topology)
Remove all delays from the topology.

Parameters

topology [Topology]

fnss.netconfig.delays.get_delays

get_delays(topology)
Returns all the delays.

Parameters

topology [Topology] The topology whose link delays are requested

Returns

delays [dict] Dictionary of link delays keyed by link.

Examples

>>> import fnss
>>> topology = fnss.Topology()
>>> topology.add_path([1,2,3])
>>> fnss.set_delays_constant(topology, 10, 'ms')
>>> delay = get_delays(topology)
>>> delay[(1,2)]
10

fnss.netconfig.delays.set_delays_constant

set_delays_constant(topology, delay=1.0, delay_unit=’ms’, links=None)
Assign a constant delay to all selected links

Parameters

topology [Topology] The topology on which delays are applied.

delay [float, optional] The constant delay to be applied to all links

delay_unit [string, optional] The unit of delays. Supported units are: “us” (microseconds),
“ms” (milliseconds) and “s” (seconds)

links [list, optional] List of selected links on which weights are applied. If it is None, all links
are selected

1.3. API Reference 21

FNSS core library, Release 0.8.2

Examples

>>> import fnss
>>> topology = fnss.Topology()
>>> topology.add_path([1, 2, 4, 5, 8])
>>> fnss.set_delays_constant(topology, 5.0, 'ms', links=[(1,2), (5,8), (4,5)])
>>> delay = fnss.get_delays(topology)
>>> delay[(1, 2)]
5.0

fnss.netconfig.delays.set_delays_geo_distance

set_delays_geo_distance(topology, specific_delay, default_delay=None, delay_unit=’ms’,
links=None)

Assign a delay to all selected links equal to the product of link length and specific delay. To use this function,
all nodes must have a ‘latitude’ and a ‘longitude’ attribute. Alternatively, all links of the topology must have
a ‘length’ attribute. If the length of a link cannot be determined, it is applied the delay equal default_delay if
specified, otherwise an error is returned.

Parameters

topology [Topology] The topology on which delays are applied.

specific_delay [float] The specific delay (in ms/Km) to be applied to all links

default_delay [float, optional] The delay to be applied to links whose length is not known. If
None, if the length of a link cannot be determined, an error is returned

delay_unit [string, optional] The unit of delays. Supported units are: “us” (microseconds),
“ms” (milliseconds) and “s” (seconds)

links [list, optional] List of selected links on which weights are applied. If it is None, all links
are selected

Examples

>>> import fnss
>>> topology = fnss.parse_abilene('abilene_topo.txt')
>>> fnss.set_delays_geo_distance(topology, specific_delay=fnss.PROPAGATION_DELAY_
→˓FIBER)

nodeconfig module

Functions to deploy and configure protocol stacks and applications on network nodes

add_application(topology, node, name[, . . .]) Add an application to a node
add_stack(topology, node, name[, properties]) Set stack on a node.
clear_applications(topology) Remove all applications from all nodes of the topology
clear_stacks(topology) Remove all stacks from all nodes of the topology
get_application_names(topology, node) Return a list of names of applications deployed on a

node
Continued on next page

22 Chapter 1. Contents

FNSS core library, Release 0.8.2

Table 16 – continued from previous page
get_application_properties(topology, node,
name)

Return a dictionary containing all the properties of an
application deployed on a node

get_stack(topology, node[, data]) Return the stack of a node, if any
remove_application(topology, node[, name]) Remove an application from a node
remove_stack(topology, node) Remove stack from a node

fnss.netconfig.nodeconfig.add_application

add_application(topology, node, name, properties=None, **attr)
Add an application to a node

Parameters

topology [Topology] The topology

node [any hashable type] The ID of the node

name [str] The name of the application

attr_dict [dict, optional] Attributes of the application

**attr [keyworded attributes] Attributes of the application

fnss.netconfig.nodeconfig.add_stack

add_stack(topology, node, name, properties=None, **kwargs)
Set stack on a node.

If the node already has a stack, it is overwritten

Parameters

topology [Topology] The topology

node [any hashable type] The ID of the node

name [str] The name of the stack

properties [dict, optional] The properties of the stack

**attr [keyworded attributes] Further properties of the application

fnss.netconfig.nodeconfig.clear_applications

clear_applications(topology)
Remove all applications from all nodes of the topology

Parameters

topology [Topology] The topology

fnss.netconfig.nodeconfig.clear_stacks

clear_stacks(topology)
Remove all stacks from all nodes of the topology

Parameters

1.3. API Reference 23

FNSS core library, Release 0.8.2

topology [Topology]

fnss.netconfig.nodeconfig.get_application_names

get_application_names(topology, node)
Return a list of names of applications deployed on a node

Parameters

topology [Topology] The topology

node [any hashable type] The ID of the node

Returns

application_names [list] A list of application names

fnss.netconfig.nodeconfig.get_application_properties

get_application_properties(topology, node, name)
Return a dictionary containing all the properties of an application deployed on a node

Parameters

topology [Topology] The topology

node [any hashable type] The ID of the node

name [str] The name of the application

Returns

applications [dict] A dictionary containing the properties of the application

fnss.netconfig.nodeconfig.get_stack

get_stack(topology, node, data=True)
Return the stack of a node, if any

Parameters

topology [Topology] The topology

node [any hashable type] The ID of the node

data [bool, optional] If true, returns a tuple of the stack name and its attributes, otherwise just
the stack name

Returns

stack [tuple (name, properties) or name only] If data = True, a tuple of two values, where the
first value is the name of the stack and the second value is the dictionary of its properties. If
data = False returns only the stack name If no stack is deployed, return None

fnss.netconfig.nodeconfig.remove_application

remove_application(topology, node, name=None)
Remove an application from a node

24 Chapter 1. Contents

FNSS core library, Release 0.8.2

Parameters

topology [Topology] The topology object

node [any hashable type] The ID of the node from which the application is to be removed

name [optional] The name of the application to remove. If not given, all the applications of the
node are removed

fnss.netconfig.nodeconfig.remove_stack

remove_stack(topology, node)
Remove stack from a node

Parameters

topology [Topology] The topology

node [any hashable type] The ID of the node

weights module

Functions to assign and manipulate link weights to a network topology.

clear_weights(topology) Remove all weights from the topology.
get_weights(topology) Returns all the weights.
set_weights_constant(topology[, weight,
links])

Assign a constant weight to all selected links

set_weights_delays(topology) Assign link weights to links proportionally their delay.
set_weights_inverse_capacity(topology) Assign link weights to links proportionally to the in-

verse of their capacity.

fnss.netconfig.weights.clear_weights

clear_weights(topology)
Remove all weights from the topology.

Parameters

topology [Topology]

fnss.netconfig.weights.get_weights

get_weights(topology)
Returns all the weights.

Parameters

topology [Topology]

Returns

weights [dict] Dictionary of weights keyed by link.

1.3. API Reference 25

FNSS core library, Release 0.8.2

Examples

>>> import fnss
>>> topology = fnss.Topology()
>>> topology.add_path([1, 2, 3])
>>> fnss.set_weights_constant(topology, weight=2.0)
>>> weight = fnss.get_weights(topology)
>>> weight[(1,2)]
2.0

fnss.netconfig.weights.set_weights_constant

set_weights_constant(topology, weight=1.0, links=None)
Assign a constant weight to all selected links

Parameters

topology [Topology] The topology on which weights are applied.

weight [float, optional] The constant weight to be applied to all links

links [iterable, optional] Iterable container of selected links on which weights are applied. If it
is None, all links are selected

Examples

>>> import fnss
>>> topology = fnss.Topology()
>>> topology.add_edges_from([(1, 2), (5, 8), (4, 5), (1, 7)])
>>> fnss.set_weights_constant(topology, weight=1.0, links=[(1, 2), (5, 8), (4,
→˓5)])

fnss.netconfig.weights.set_weights_delays

set_weights_delays(topology)
Assign link weights to links proportionally their delay. Weights are normalized so that the minimum weight is
1.

Parameters

topology [Topology] The topology on which weights are applied.

Examples

>>> import fnss
>>> topology = fnss.erdos_renyi_topology(50, 0.1)
>>> fnss.set_delays_constant(topology, 2, 'ms')
>>> fnss.set_weights_delays(topology)

26 Chapter 1. Contents

FNSS core library, Release 0.8.2

fnss.netconfig.weights.set_weights_inverse_capacity

set_weights_inverse_capacity(topology)
Assign link weights to links proportionally to the inverse of their capacity. Weights are normalized so that the
minimum weight is 1.

Parameters

topology [Topology] The topology on which weights are applied.

Examples

>>> import fnss
>>> topology = fnss.Topology()
>>> topology.add_path([1,2,3,4])
>>> fnss.set_capacities_constant(topology, 10, 'Mbps')
>>> fnss.set_weights_inverse_capacity(topology)

1.3.2.2 traffic package

eventscheduling module

Functions and classes for creating and manipulating event schedules.

An event schedule is simply a list of events each labelled with a time and a number of properties.

An event schedule can be read and written from/to an XML files with provided functions.

deterministic_process_event_schedule(. . .)Return a schedule of events separated by a fixed time
interval

poisson_process_event_schedule(avg_interval,
. . .)

Return a schedule of Poisson-distributed events

read_event_schedule(path) Read event schedule from an XML file
write_event_schedule(event_schedule, path[,
. . .])

Write an event schedule object to an XML file.

fnss.traffic.eventscheduling.deterministic_process_event_schedule

deterministic_process_event_schedule(interval, t_start, duration, t_unit, event_generator,
*args, **kwargs)

Return a schedule of events separated by a fixed time interval

Parameters

interval [float] The fixed time interval between subsequent events

t_start [float] The time at which the schedule starts

duration [float] The duration of the event schedule

t_unit: string The unit in which time values are expressed (e.g. ‘ms’, ‘s’)

event_generator [function] A function that when called returns an event, i.e. a dictionary of
event properties

1.3. API Reference 27

FNSS core library, Release 0.8.2

*args [argument list] List of non-keyworded arguments for event_generator function

**kwargs [keyworded argument list] List of keyworded arguments for event_generator func-
tion

Returns

event_schedule [EventSchedule] An EventSchedule object

fnss.traffic.eventscheduling.poisson_process_event_schedule

poisson_process_event_schedule(avg_interval, t_start, duration, t_unit, event_generator, *args,
**kwargs)

Return a schedule of Poisson-distributed events

Parameters

avg_interval [float] The average time interval between subsequent events

t_start [float] The time at which the schedule starts

duration [float] The duration of the event schedule

t_unit [string] The unit in which time values are expressed (e.g. ‘ms’, ‘s’)

seed [int, long or hashable type, optional] The seed to be used by the random generator.

event_generator [callable] A function that when called returns an event, i.e. a dictionary of
event properties

*args [argument list] List of non-keyworded arguments for event_generator function

**kwargs [keyworded argument list] List of keyworded arguments for event_generator func-
tion

Returns

event_schedule [EventSchedule] An EventSchedule object

fnss.traffic.eventscheduling.read_event_schedule

read_event_schedule(path)
Read event schedule from an XML file

Parameters

path [str] The path to the event schedule XML file

Returns

event_schedule [EventSchedule] The parsed event schedule

fnss.traffic.eventscheduling.write_event_schedule

write_event_schedule(event_schedule, path, encoding=’utf-8’, prettyprint=True)
Write an event schedule object to an XML file.

Parameters

event_schedule [EventSchedule] The event schedule to write

path [str] The path of the output XML file

28 Chapter 1. Contents

FNSS core library, Release 0.8.2

encoding [str, optional] The desired encoding of the output file

prettyprint [bool, optional] Specify whether the XML file should be written with indentation
for improved human readability

trafficmatrices module

Functions and classes for creating and manipulating traffic matrices.

The functions of this class allow users to synthetically generate traffic matrices with given statistical properties ac-
cording to models proposed in literature.

The output of this generation is either a TrafficMatrix or a TrafficMatrixSequence object.

A traffic matrix or a sequence of matrices can be read and written from/to an XML files with provided functions.

link_loads(topology, traffic_matrix[, . . .]) Calculate link utilization given a traffic matrix.
read_traffic_matrix(path[, encoding]) Parses a traffic matrix from a traffic matrix XML file.
sin_cyclostationary_traffic_matrix(topology,
. . .)

Return a cyclostationary sequence of traffic matrices,
where traffic volumes evolve over time as sin waves.

static_traffic_matrix(topology, mean, std-
dev)

Return a TrafficMatrix object, i.e.

stationary_traffic_matrix(topology, mean,
. . .)

Return a stationary sequence of traffic matrices.

validate_traffic_matrix(topology, traf-
fic_matrix)

Validate whether a given traffic matrix and given topol-
ogy are compatible.

write_traffic_matrix(traffic_matrix, path[,
. . .])

Write a TrafficMatrix or a TrafficMatrixSequence object
to an XML file.

fnss.traffic.trafficmatrices.link_loads

link_loads(topology, traffic_matrix, routing_matrix=None, ecmp=False)
Calculate link utilization given a traffic matrix.

Return a dictionary mapping for each link of a topology, the relative link utilization (i.e. traffic volume divided
by link capacity) given a traffic matrix. The keys of the dictionary are (u, v) tuple where u and v are respectively
the source and destination nodes of the link. The values are float values between 0 and 1. A zero value means
that the link is not utilized, while a one value means that the link is saturated.

Link utilizations are calculated assuming that all traffic is routed following the shortest path from origin to
destination, calculated with the Dijkstra algorithm. If the topology is annotated with link weights, they are used
for the shortest path calculation. Otherwise hop count is used.

Parameters

topology [topology] The topology whose link utilization is calculated. This topology must be
annotate with at least link capacity. If it also presents link weights, those are used for shortest
paths calculation.

tm [TrafficMatrix] The traffic matrix associated to the topology.

routing_matrix [dict of dicts] The routing matrix used by the traffic. This matrix is a dictionary
of dictionaries, where the keys of the root dictionary are the origin nodes, the keys of the
nested dictionary are the destination nodes and the values of the nested dictionary are lists
of nodes on the path from origin to destination (both included). For example, if the path
from node 1 to node 4 is 1 -> 2 -> 3 -> 4, then routing_matrix[1][4] = [1, 2, 3, 4]. If ecmp is

1.3. API Reference 29

FNSS core library, Release 0.8.2

set to True, the values of the nested dictionary are lists of lists of nodes, each representing a
path, among which the load will be equally divided. The networkx all_pairs_dijkstra_path
function returns shortest paths in this format. If this parameter is None, then Dijkstra shortest
paths are used.

ecmp: bool Enables the usage of Equal-Cost Multi Path Routing.

Returns

link_loads [dict] A dictionary of link loads keyed by link

fnss.traffic.trafficmatrices.read_traffic_matrix

read_traffic_matrix(path, encoding=’utf-8’)
Parses a traffic matrix from a traffic matrix XML file. If the XML file contains more than one traffic matrix, it
returns a TrafficMatrixSequence object, otherwise a TrafficMatrixObject.

Parameters

path: str The path of the XML file to parse

encoding [str, optional] The encoding of the file

Returns

tm [TrafficMatrix or TrafficMatrixSequence]

fnss.traffic.trafficmatrices.sin_cyclostationary_traffic_matrix

sin_cyclostationary_traffic_matrix(topology, mean, stddev, gamma, log_psi, delta=0.2,
n=24, periods=1, max_u=0.9, origin_nodes=None, desti-
nation_nodes=None)

Return a cyclostationary sequence of traffic matrices, where traffic volumes evolve over time as sin waves.

The sequence is generated by first generating a single matrix assigning traffic volumes drawn from a lognor-
mal distribution and assigned to specific origin-destination pairs using the Ranking Metrics Heuristic method
proposed by Nucci et al. [3]. Then, all matrices of the sequence are generated by adding zero-mean normal
fluctuation in the traffic volumes. Finally, traffic volumes are multiplied by a sin function with unitary mean to
model periodic fluctuations.

This process was originally proposed by [3].

Cyclostationary sequences of traffic matrices are generally suitable for modeling real network traffic over long
periods, up to several days. In fact, real traffic exhibits diurnal patterns well modelled by cyclostationary se-
quences.

Parameters

topology [topology] The topology for which the traffic matrix is calculated. This topology can
either be directed or undirected. If it is undirected, this function assumes that all links are
full-duplex.

mean [float] The mean volume of traffic among all origin-destination pairs

stddev [float] The standard deviation of volumes among all origin-destination pairs.

gamma [float] Parameter expressing relation between mean and standard deviation of traffic
volumes of a specific flow over the time

log_psi [float] Parameter expressing relation between mean and standard deviation of traffic
volumes of a specific flow over the time

30 Chapter 1. Contents

FNSS core library, Release 0.8.2

delta [float [0, 1]] A parameter indicating the intensity of variation of traffic volumes over a
period. Specifically, let x be the mean volume over a specific OD pair, the minimum and
maximum traffic volumes for that OD pair (excluding random fluctuations) are respectively
𝑥 * (1 − 𝑑𝑒𝑙𝑡𝑎) and 𝑥 * (1 + 𝑑𝑒𝑙𝑡𝑎)

n [int] Number of traffic matrices per period. For example, if it is desired to model traffic
varying cyclically over a 24 hour period, and n is set to 24, therefore, the time interval
between subsequent traffic matrices is is 1 hour.

periods [int] Number of periods. In total the sequence is composed of 𝑛 * 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 traffic
matrices.

max_u [float, optional] Represent the max link utilization. If specified, traffic volumes are
scaled so that the most utilized link of the network has an utilization equal to max_u. If
None, volumes are not scaled, but in this case links may end up with an utilization factor
greater than 1.0

origin_nodes [list, optional] A list of all nodes which can be traffic sources. If not specified all
nodes of the topology are traffic sources

destination_nodes [list, optional] A list of all nodes which can be traffic destinations. If not
specified all nodes of the topology are traffic destinations

Returns

tms [TrafficMatrixSequence]

References

[3]

fnss.traffic.trafficmatrices.static_traffic_matrix

static_traffic_matrix(topology, mean, stddev, max_u=0.9, origin_nodes=None, destina-
tion_nodes=None)

Return a TrafficMatrix object, i.e. a single traffic matrix, representing the traffic volume exchanged over a
network at a specific point in time

This matrix is generated by assigning traffic volumes drawn from a lognormal distribution and assigned to
specific origin-destination pairs using the Ranking Metrics Heuristic method proposed by Nucci et al. [1]

Parameters

topology [topology] The topology for which the traffic matrix is calculated. This topology can
either be directed or undirected. If it is undirected, this function assumes that all links are
full-duplex.

mean [float] The mean volume of traffic among all origin-destination pairs

stddev [float] The standard deviation of volumes among all origin-destination pairs.

max_u [float, optional] Represent the max link utilization. If specified, traffic volumes are
scaled so that the most utilized link of the network has an utilization equal to max_u. If
None, volumes are not scaled, but in this case links may end up with an utilization factor
greater than 1.0

origin_nodes [list, optional] A list of all nodes which can be traffic sources. If not specified, all
nodes of the topology are traffic sources

1.3. API Reference 31

FNSS core library, Release 0.8.2

destination_nodes [list, optional] A list of all nodes which can be traffic destinations. If not
specified, all nodes of the topology are traffic destinations

Returns

tm [TrafficMatrix]

References

[1]

fnss.traffic.trafficmatrices.stationary_traffic_matrix

stationary_traffic_matrix(topology, mean, stddev, gamma, log_psi, n, max_u=0.9, ori-
gin_nodes=None, destination_nodes=None)

Return a stationary sequence of traffic matrices.

The sequence is generated by first generating a single matrix assigning traffic volumes drawn from a lognor-
mal distribution and assigned to specific origin-destination pairs using the Ranking Metrics Heuristic method
proposed by Nucci et al. [2]. Then, all matrices of the sequence are generated by adding zero-mean normal
fluctuation in the traffic volumes. This process was originally proposed by [2]

Stationary sequences of traffic matrices are generally suitable for modeling network traffic over short periods
(up to 1.5 hours). Over longer periods, real traffic exhibits diurnal patterns and they are better modelled by
cyclostationary sequences

Parameters

topology [topology] The topology for which the traffic matrix is calculated. This topology can
either be directed or undirected. If it is undirected, this function assumes that all links are
full-duplex.

mean [float] The mean volume of traffic among all origin-destination pairs

stddev [float] The standard deviation of volumes among all origin-destination pairs.

gamma [float] Parameter expressing relation between mean and standard deviation of traffic
volumes of a specific flow over the time

log_psi [float] Parameter expressing relation between mean and standard deviation of traffic
volumes of a specific flow over the time

n [int] Number of matrices in the sequence

max_u [float, optional] Represent the max link utilization. If specified, traffic volumes are
scaled so that the most utilized link of the network has an utilization equal to max_u. If
None, volumes are not scaled, but in this case links may end up with an utilization factor
greater than 1.0

origin_nodes [list, optional] A list of all nodes which can be traffic sources. If not specified all
nodes of the topology are traffic sources

destination_nodes [list, optional] A list of all nodes which can be traffic destinations. If not
specified all nodes of the topology are traffic destinations

Returns

tms [TrafficMatrixSequence]

32 Chapter 1. Contents

FNSS core library, Release 0.8.2

References

[2]

fnss.traffic.trafficmatrices.validate_traffic_matrix

validate_traffic_matrix(topology, traffic_matrix, validate_load=False)
Validate whether a given traffic matrix and given topology are compatible.

Returns True if they are compatible, False otherwise

This validation includes validating whether the origin-destination pairs of the traffic matrix are coincide with or
are a subset of the origin-destination pairs of the topology. Optionally, this function can verify if the volumes of
the traffic matrix are compatible too, i.e. if at any time, no link has an utilization greater than 1.0.

Parameters

topology [topology] The topology agains which the traffic matrix is validated

tm [TrafficMatrix or TrafficMatrixSequence] The traffic matrix (or sequence of) to be validated

validate_load [bool, optional] Specify whether load compatibility has to be validated or not.
Default value is False

Returns

is_valid [bool] True if the topology and the traffic matrix are compatible, False otherwise

fnss.traffic.trafficmatrices.write_traffic_matrix

write_traffic_matrix(traffic_matrix, path, encoding=’utf-8’, prettyprint=True)
Write a TrafficMatrix or a TrafficMatrixSequence object to an XML file. This function can be use to either
persistently store a traffic matrix for later use or to export it to an FNSS adapter for a simulator or an API for
another programming language.

Parameters

traffic_matrix [TrafficMatrix or TrafficMatrixSequence] The traffic matrix to save

path [str] The path where the file will be saved

encoding [str, optional] The desired encoding of the output file

prettyprint [bool, optional] Specify whether the XML file should be written with indentation
for improved human readability

1.3.2.3 topologies package

datacenter module

Functions to generate commonly adopted datacenter topologies.

Each topology generation function returns an instance of DatacenterTopology

bcube_topology(n, k) Return a Bcube datacenter topology, as described in
[R48460de4c968-1]:

Continued on next page

1.3. API Reference 33

FNSS core library, Release 0.8.2

Table 20 – continued from previous page
fat_tree_topology(k) Return a fat tree datacenter topology, as described in

[Rdaad0f90b4be-1]
three_tier_topology(n_core, n_aggregation,
. . .)

Return a three-tier data center topology.

two_tier_topology(n_core, n_edge, n_hosts) Return a two-tier datacenter topology.

fnss.topologies.datacenter.bcube_topology

bcube_topology(n, k)
Return a Bcube datacenter topology, as described in [1]:

The BCube topology is a topology specifically designed for shipping-container based, modular data centers. A
BCube topology comprises hosts with multiple network interfaces connected to commodity switches. It has the
peculiar characteristic that switches are never directly connected to each other and hosts are used also for packet
forwarding. This topology is defined as a recursive structure. A 𝐵𝑐𝑢𝑏𝑒0 is composed of n hosts connected to an
n-port switch. A 𝐵𝑐𝑢𝑏𝑒1 is composed of n 𝐵𝑐𝑢𝑏𝑒0 connected to n n-port switches. A 𝐵𝑐𝑢𝑏𝑒𝑘 is composed of
n 𝐵𝑐𝑢𝑏𝑒𝑘−1 connected to 𝑛𝑘 n-port switches.

This topology comprises:

• 𝑛(𝑘 + 1) hosts, each of them connected to 𝑘 + 1 switches

• 𝑛 * (𝑘 + 1) switches, each of them having n ports

Each node has an attribute type which can either be switch or host and an attribute level which specifies at what
level of the Bcube hierarchy it is located.

Each edge also has the attribute level.

Parameters

k [int] The level of Bcube

n [int] The number of host per 𝐵𝑐𝑢𝑏𝑒0

Returns

topology [DatacenterTopology]

References

[1]

fnss.topologies.datacenter.fat_tree_topology

fat_tree_topology(k)
Return a fat tree datacenter topology, as described in [1]

A fat tree topology built using k-port switches can support up to (𝑘3)/4 hosts. This topology comprises k
pods with two layers of 𝑘/2 switches each. In each pod, each aggregation switch is connected to all the 𝑘/2
edge switches and each edge switch is connected to 𝑘/2 hosts. There are (𝑘/2)2 core switches, each of them
connected to one aggregation switch per pod.

Each node has three attributes:

• type: can either be switch or host

34 Chapter 1. Contents

FNSS core library, Release 0.8.2

• tier: can either be core, aggregation, edge or leaf. Nodes in

• pod: the pod id in which the node is located, unless it is a core switch the leaf tier are only host, while
all core, aggregation and edge nodes are switches.

Each edge has an attribute type as well which can either be core_edge if it connects a core and an aggregation
switch, aggregation_edge, if it connects an aggregation and a core switch or edge_leaf if it connects an edge
switch to a host.

Parameters

k [int] The number of ports of the switches

Returns

topology [DatacenterTopology]

References

[1]

fnss.topologies.datacenter.three_tier_topology

three_tier_topology(n_core, n_aggregation, n_edge, n_hosts)
Return a three-tier data center topology.

This topology comprises switches organized in three tiers (core, aggregation and edge) and hosts connected
to edge routers. Each core switch is connected to each aggregation, each edge switch is connected to one
aggregation switch and finally each host is connected to exactly one edge switch.

Each node has two attributes:

• type: can either be switch or host

• tier: can either be core, aggregation, edge or leaf. Nodes in the leaf tier are only host, while all core,
aggregation and edge nodes are switches.

Each edge has an attribute type as well which can either be core_edge if it connects a core and an aggregation
switch, aggregation_edge, if it connects an aggregation and a core switch or edge_leaf if it connects an edge
switch to a host.

The total number of hosts is 𝑛𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 * 𝑛𝑒𝑑𝑔𝑒 * 𝑛ℎ𝑜𝑠𝑡𝑠.

Parameters

n_core [int] Total number of core switches

n_aggregation [int] Total number of aggregation switches

n_edge [int] Number of edge switches per each each aggregation switch

n_hosts [int] Number of hosts connected to each edge switch.

Returns

topology [DatacenterTopology]

1.3. API Reference 35

FNSS core library, Release 0.8.2

fnss.topologies.datacenter.two_tier_topology

two_tier_topology(n_core, n_edge, n_hosts)
Return a two-tier datacenter topology.

This topology comprises switches organized in two tiers (core and edge) and hosts connected to edge routers.
Each core switch is connected to each edge switch while each host is connected to exactly one edge switch.

Each node has two attributes:

• type: can either be switch or host

• tier: can either be core, edge or leaf. Nodes in the leaf tier are only host, while all core and edge nodes
are switches.

Each edge has an attribute type as well which can either be core_edge if it connects a core and an edge switch
or edge_leaf if it connects an edge switch to a host.

Parameters

n_core [int] Total number of core switches

n_edge [int] Total number of edge switches

n_hosts [int] Number of hosts connected to each edge switch.

Returns

topology [DatacenterTopology]

parsers module

Functions to parse topologies from datasets or from other generators.

parse_abilene(topology_path[, links_path]) Parse the Abilene topology.
parse_ashiip(path) Parse a topology from an output file generated by the

aShiip topology generator
parse_brite(path[, capacity_unit, . . .]) Parse a topology from an output file generated by the

BRITE topology generator
parse_caida_as_relationships(path) Parse a topology from the CAIDA AS relationships

dataset
parse_inet(path) Parse a topology from an output file generated by the

Inet topology generator
parse_rocketfuel_isp_map(path) Parse a network topology from RocketFuel ISP map file.
parse_rocketfuel_isp_latency(latencies_path) Parse a network topology from RocketFuel ISP topol-

ogy file (latency.intra) with inferred link latencies and
optionally annotate the topology with inferred weights
(weights.infra).

parse_topology_zoo(path) Parse a topology from the Topology Zoo dataset.

fnss.topologies.parsers.parse_abilene

parse_abilene(topology_path, links_path=None)
Parse the Abilene topology.

Parameters

36 Chapter 1. Contents

FNSS core library, Release 0.8.2

topology_path [str] The path of the Abilene topology file

links_path [str, optional] The path of the Abilene links file

Returns

topology [DirectedTopology]

fnss.topologies.parsers.parse_ashiip

parse_ashiip(path)
Parse a topology from an output file generated by the aShiip topology generator

Parameters

path [str] The path to the aShiip output file

Returns

topology [Topology]

fnss.topologies.parsers.parse_brite

parse_brite(path, capacity_unit=’Mbps’, delay_unit=’ms’, distance_unit=’Km’, directed=True)
Parse a topology from an output file generated by the BRITE topology generator

Parameters

path [str] The path to the BRITE output file

capacity_unit [str, optional] The unit in which link capacity values are expresses in the BRITE
file

delay_unit [str, optional] The unit in which link delay values are expresses in the BRITE file

distance_unit [str, optional] The unit in which node coordinates are expresses in the BRITE
file

directed [bool, optional] If True, the topology is parsed as directed topology.

Returns

topology [Topology or DirectedTopology]

Notes

Each node of the returned topology object is labeled with latitude and longitude attributes. These attributes are
not expressed in degrees but in distance_unit.

fnss.topologies.parsers.parse_caida_as_relationships

parse_caida_as_relationships(path)
Parse a topology from the CAIDA AS relationships dataset

Parameters

path [str] The path to the CAIDA AS relationships file

Returns

1.3. API Reference 37

FNSS core library, Release 0.8.2

topology [DirectedTopology]

Notes

The node names of the returned topology are the the ASN of the of the AS they represent and edges are annotated
with the relationship between ASes they connect. The relationship values can either be customer, peer or sibling.

References

http://www.caida.org/data/active/as-relationships/ http://as-rank.caida.org/data/

fnss.topologies.parsers.parse_inet

parse_inet(path)
Parse a topology from an output file generated by the Inet topology generator

Parameters

path [str] The path to the Inet output file

Returns

topology [Topology]

Notes

Each node of the returned topology object is labeled with latitude and longitude attributes. These attributes are
not expressed in degrees but in Kilometers.

fnss.topologies.parsers.parse_rocketfuel_isp_map

parse_rocketfuel_isp_map(path)
Parse a network topology from RocketFuel ISP map file.

The ASes provided by the RocketFuel dataset are the following:

ASN Name Span Region Nodes (r1) Nodes (r0)
1221 1239
1755 2914
3257 3356
3967 4755
6461 7018

Telstra (Aus-
tralia) Sprint-
link (US)
EBONE (Eu-
rope) Verio
(US) Tiscali
(Europe) Level
3 (US) Ex-
odus (US)
VSNL (India)
Abovenet (US)
AT&T (US)

world world
world world
world world
world world
world world

AUS US Eu-
rope US Eu-
rope US US In-
dia US US

2999
8352

609

7109
855

3447
917
121

0

10152

378
(318)
700
(604)
172

1013 248
(240) 652
215 (201)

12
202 656
(631)

38 Chapter 1. Contents

http://www.caida.org/data/active/as-relationships/
http://as-rank.caida.org/data/

FNSS core library, Release 0.8.2

Parameters

path [str] The path of the file containing the RocketFuel map. It should have extension .cch

Returns

topology [DirectedTopology] The object containing the parsed topology.

Raises

ValueError If the provided file cannot be parsed correctly.

Notes

The returned topology is always directed. If an undirected topology is desired, convert it using the Directed-
Topology.to_undirected() method.

Each node of the returned graph has the following attributes:

• type: string

• location: string (optional)

• address: string

• r: int

• backbone: boolean (optional)

Each edge of the returned graph has the following attributes:

• type : string, which can either be internal or external

If the topology contains self-loops (links starting and ending in the same node) they are stripped from the
topology.

Examples

>>> import fnss
>>> topology = fnss.parse_rocketfuel_isp_map('1221.r0.cch')

fnss.topologies.parsers.parse_rocketfuel_isp_latency

parse_rocketfuel_isp_latency(latencies_path, weights_path=None)
Parse a network topology from RocketFuel ISP topology file (latency.intra) with inferred link latencies and
optionally annotate the topology with inferred weights (weights.infra).

The ASes provided by the RocketFuel dataset are the following:

1.3. API Reference 39

FNSS core library, Release 0.8.2

ASN Name Span Region Nodes Lrgst conn.
comp.

1221 1239
1755 3257
3967 6461

Telstra (Aus-
tralia) Sprint-
link (US)
EBONE (Eu-
rope) Tiscali
(Europe) Ex-
odus (US)
Abovenet (US)

world world
world world
world world

AUS US Eu-
rope Europe
US US

108 315
87

161 79

141

104 315
87

161 79

138

Parameters

latencies_path [str] The path of the file containing the RocketFuel latencies file. It should have
extension .intra

weights_path [str, optional] The path of the file containing the RocketFuel weights file. It
should have extension .intra

Returns

topology [DirectedTopology] The object containing the parsed topology.

Notes

The returned topology is directed. It can be converted using the DirectedTopology.to_undirected() method if an
undirected topology is desired.

Each node of the returned graph has the following attributes:

• name: string

• location: string

Each edge of the returned graph has the following attributes:

• delay : int

• wdights : float (only if a weights file was specified)

Examples

>>> import fnss
>>> topology = fnss.parse_rocketfuel_isp_latency('1221.latencies.intra')

fnss.topologies.parsers.parse_topology_zoo

parse_topology_zoo(path)
Parse a topology from the Topology Zoo dataset.

Parameters

path [str] The path to the Topology Zoo file

Returns

40 Chapter 1. Contents

FNSS core library, Release 0.8.2

topology [Topology or DirectedTopology] The parsed topology.

Notes

If the parsed topology contains bundled links, i.e. multiple links between the same pair or nodes, the topology
is parsed correctly but each bundle of links is represented as a single link whose capacity is the sum of the
capacities of the links of the bundle (if capacity values were provided). The returned topology has a boolean
attribute named link_bundling which is True if the topology contains at list one bundled link or False otherwise.
If the topology contains bundled links, then each link has an additional boolean attribute named bundle which is
True if that specific link was bundled in the original topology or False otherwise.

randmodels module

Functions to generate random topologies according to a number of models.

The generated topologies are either Topology or DirectedTopology objects.

barabasi_albert_topology(n, m, m0[, seed]) Return a random topology using Barabasi-Albert pref-
erential attachment model.

erdos_renyi_topology(n, p[, seed, fast]) Return a random graph 𝐺𝑛,𝑝 (Erdos-Renyi graph, bino-
mial graph).

extended_barabasi_albert_topology(n, m,
m0, p, q)

Return a random topology using the extended Barabasi-
Albert preferential attachment model.

glp_topology(n, m, m0, p, beta[, seed]) Return a random topology using the Generalized Linear
Preference (GLP) preferential attachment model.

waxman_1_topology(n[, alpha, beta, L, . . .]) Return a Waxman-1 random topology.
waxman_2_topology(n[, alpha, beta, domain, . . .]) Return a Waxman-2 random topology.

fnss.topologies.randmodels.barabasi_albert_topology

barabasi_albert_topology(n, m, m0, seed=None)
Return a random topology using Barabasi-Albert preferential attachment model.

A topology of n nodes is grown by attaching new nodes each with m links that are preferentially attached to
existing nodes with high degree.

More precisely, the Barabasi-Albert topology is built as follows. First, a line topology with m0 nodes is created.
Then at each step, one node is added and connected to m existing nodes. These nodes are selected randomly
with probability

Π(𝑖) =
𝑑𝑒𝑔(𝑖)

𝑠𝑢𝑚𝑣∈𝑉 𝑑𝑒𝑔𝑉
.

Where i is the selected node and V is the set of nodes of the graph.

Parameters

n [int] Number of nodes

m [int] Number of edges to attach from a new node to existing nodes

m0 [int] Number of nodes initially attached to the network

seed [int, optional] Seed for random number generator (default=None).

Returns

1.3. API Reference 41

FNSS core library, Release 0.8.2

G [Topology]

Notes

The initialization is a graph with with m nodes connected by 𝑚 − 1 edges. It does not use the Barabasi-Albert
method provided by NetworkX because it does not allow to specify m0 parameter. There are no disconnected
subgraphs in the topology.

References

[1]

fnss.topologies.randmodels.erdos_renyi_topology

erdos_renyi_topology(n, p, seed=None, fast=False)
Return a random graph 𝐺𝑛,𝑝 (Erdos-Renyi graph, binomial graph).

Chooses each of the possible edges with probability p.

Parameters

n [int] The number of nodes.

p [float] Probability for edge creation.

seed [int, optional] Seed for random number generator (default=None).

fast [boolean, optional] Uses the algorithm proposed by [3], which is faster for small p

References

[1], [2], [3]

fnss.topologies.randmodels.extended_barabasi_albert_topology

extended_barabasi_albert_topology(n, m, m0, p, q, seed=None)
Return a random topology using the extended Barabasi-Albert preferential attachment model.

Differently from the original Barabasi-Albert model, this model takes into account the presence of local events,
such as the addition of new links or the rewiring of existing links.

More precisely, the Barabasi-Albert topology is built as follows. First, a topology with m0 isolated nodes
is created. Then, at each step: with probability p add m new links between existing nodes, selected with
probability:

Π(𝑖) =
𝑑𝑒𝑔(𝑖) + 1∑︀

𝑣∈𝑉 (𝑑𝑒𝑔(𝑣) + 1)

with probability q rewire m links. Each link to be rewired is selected as follows: a node i is randomly selected
and a link is randomly removed from it. The node i is then connected to a new node randomly selected with
probability Π(𝑖), with probability 1 − 𝑝 − 𝑞 add a new node and attach it to m nodes of the existing topology
selected with probability Π(𝑖)

Repeat the previous step until the topology comprises n nodes in total.

42 Chapter 1. Contents

FNSS core library, Release 0.8.2

Parameters

n [int] Number of nodes

m [int] Number of edges to attach from a new node to existing nodes

m0 [int] Number of edges initially attached to the network

p [float] The probability that new links are added

q [float] The probability that existing links are rewired

seed [int, optional] Seed for random number generator (default=None).

Returns

G [Topology]

References

[1]

fnss.topologies.randmodels.glp_topology

glp_topology(n, m, m0, p, beta, seed=None)
Return a random topology using the Generalized Linear Preference (GLP) preferential attachment model.

It differs from the extended Barabasi-Albert model in that there is link rewiring and a beta parameter is intro-
duced to fine-tune preferential attachment.

More precisely, the GLP topology is built as follows. First, a line topology with m0 nodes is created. Then, at
each step: with probability p, add m new links between existing nodes, selected with probability:

Π(𝑖) =
𝑑𝑒𝑔(𝑖) − 𝛽1∑︀

𝑣∈𝑉 (𝑑𝑒𝑔(𝑣) − 𝛽)

with probability 1−𝑝, add a new node and attach it to m nodes of the existing topology selected with probability
Π(𝑖)

Repeat the previous step until the topology comprises n nodes in total.

Parameters

n [int] Number of nodes

m [int] Number of edges to attach from a new node to existing nodes

m0 [int] Number of edges initially attached to the network

p [float] The probability that new links are added

beta [float] Parameter to fine-tune preferntial attachment: beta < 1

seed [int, optional] Seed for random number generator (default=None).

Returns

G [Topology]

References

[1]

1.3. API Reference 43

FNSS core library, Release 0.8.2

fnss.topologies.randmodels.waxman_1_topology

waxman_1_topology(n, alpha=0.4, beta=0.1, L=1.0, distance_unit=’Km’, seed=None)
Return a Waxman-1 random topology.

The Waxman-1 random topology models assigns link between nodes with probability

𝑝 = 𝛼 * 𝑒𝑥𝑝(−𝑑/(𝛽 * 𝐿)).

where the distance d is chosen randomly in [0,L].

Parameters

n [int] Number of nodes

alpha [float] Model parameter chosen in (0,1] (higher alpha increases link density)

beta [float] Model parameter chosen in (0,1] (higher beta increases difference between density
of short and long links)

L [float] Maximum distance between nodes.

seed [int, optional] Seed for random number generator (default=None).

Returns

G [Topology]

Notes

Each node of G has the attributes latitude and longitude. These attributes are not expressed in degrees but in
distance_unit.

Each edge of G has the attribute length, which is also expressed in distance_unit.

References

[1]

fnss.topologies.randmodels.waxman_2_topology

waxman_2_topology(n, alpha=0.4, beta=0.1, domain=(0, 0, 1, 1), distance_unit=’Km’, seed=None)
Return a Waxman-2 random topology.

The Waxman-2 random topology models place n nodes uniformly at random in a rectangular domain. Two
nodes u, v are connected with a link with probability

𝑝 = 𝛼 * 𝑒𝑥𝑝(−𝑑/(𝛽 * 𝐿)).

where the distance d is the Euclidean distance between the nodes u and v. and L is the maximum distance
between all nodes in the graph.

Parameters

n [int] Number of nodes

alpha [float] Model parameter chosen in (0,1] (higher alpha increases link density)

44 Chapter 1. Contents

FNSS core library, Release 0.8.2

beta [float] Model parameter chosen in (0,1] (higher beta increases difference between density
of short and long links)

domain [tuple of numbers, optional] Domain size (xmin, ymin, xmax, ymax)

seed [int, optional] Seed for random number generator (default=None).

Returns

G [Topology]

Notes

Each edge of G has the attribute length

References

[1]

simplemodels module

Generate canonical deterministic topologies

chord_topology(m[, r]) Return a Chord topology, as described in
[R409142fb3296-1]:

dumbbell_topology(m1, m2) Return a dumbbell topology consisting of two star
topologies connected by a path.

full_mesh_topology(n) Return a fully connected mesh topology of n nodes
k_ary_tree_topology(k, h) Return a balanced k-ary tree topology of with depth h
line_topology(n) Return a line topology of n nodes
ring_topology(n) Return a ring topology of n nodes
star_topology(n) Return a star (a.k.a hub-and-spoke) topology of 𝑛 + 1

nodes

fnss.topologies.simplemodels.chord_topology

chord_topology(m, r=1)
Return a Chord topology, as described in [1]:

Chord is a Distributed Hash Table (DHT) providing guaranteed correctness. In Chord, both nodes and keys are
identified by sequences of 𝑚 bits. Keys can be resolved in at most 𝑙𝑜𝑔(𝑛) steps (with 𝑛 being the number of
nodes) as long as each node maintains a routing table o 𝑛 entries.

In this implementation, it is possible only to generate topologies with a number of nodes 𝑛 = 2𝑚. where 𝑚 is
the length (in bits) of the keys used by Chord and also corresponds the the size of the finger table kept by each
node.

The 𝑟 argument is the number of nearest successors which can be optionally kept at each node to guarantee
correctness in case of node failures.

Parameters

m [int] The length of keys (in bits), which also corresponds to the length of the finger table of
each node

1.3. API Reference 45

FNSS core library, Release 0.8.2

r [int, optional] The length of the nearest successors table

Returns

G [DirectedTopology] A Chord topology

References

[1]

fnss.topologies.simplemodels.dumbbell_topology

dumbbell_topology(m1, m2)
Return a dumbbell topology consisting of two star topologies connected by a path.

More precisely, two star graphs 𝐾𝑚1 form the left and right bells, and are connected by a path 𝑃𝑚2.

The 2 *𝑚1 + 𝑚2 nodes are numbered as follows.

• 0, ...,𝑚1 − 1 for the left barbell,

• 𝑚1, ...,𝑚1 + 𝑚2 − 1 for the path,

• 𝑚1 + 𝑚2, ..., 2 *𝑚1 + 𝑚2 − 1 for the right barbell.

The 3 subgraphs are joined via the edges (𝑚1− 1,𝑚1) and (𝑚1 +𝑚2− 1,𝑚1 +𝑚2). If m2 = 0, this is merely
two star topologies joined together.

Please notice that this dumbbell topology is different from the barbell graph generated by networkx’s bar-
bell_graph function. That barbell graph consists of two complete graphs connected by a path. This consists
of two stars whose roots are connected by a path. This dumbbell topology is particularly useful for simulating
transport layer protocols.

All nodes and edges of this topology have an attribute type which can be either right bell, core or left_bell

Parameters

m1 [int] The number of nodes in each bell

m2 [int] The number of nodes in the path

Returns

topology [A Topology object]

fnss.topologies.simplemodels.full_mesh_topology

full_mesh_topology(n)
Return a fully connected mesh topology of n nodes

Parameters

n [int] The number of nodes

Returns

topology [A Topology object]

46 Chapter 1. Contents

FNSS core library, Release 0.8.2

fnss.topologies.simplemodels.k_ary_tree_topology

k_ary_tree_topology(k, h)
Return a balanced k-ary tree topology of with depth h

Each node has two attributes:

• type: which can either be root, intermediate or leaf

• depth:math:(0, h) the height of the node in the tree, where 0 is the root and h are leaves.

Parameters

k [int] The branching factor of the tree

h [int] The height or depth of the tree

Returns

topology [A Topology object]

fnss.topologies.simplemodels.line_topology

line_topology(n)
Return a line topology of n nodes

Parameters

n [int] The number of nodes

Returns

topology [A Topology object]

fnss.topologies.simplemodels.ring_topology

ring_topology(n)
Return a ring topology of n nodes

Parameters

n [int] The number of nodes

Returns

topology [A Topology object]

fnss.topologies.simplemodels.star_topology

star_topology(n)
Return a star (a.k.a hub-and-spoke) topology of 𝑛 + 1 nodes

The root (hub) node has id 0 while all leaf (spoke) nodes have id (1, 𝑛 + 1).

Each node has the attribute type which can either be root (for node 0) or leaf for all other nodes

Parameters

n [int] The number of leaf nodes

Returns

1.3. API Reference 47

FNSS core library, Release 0.8.2

topology [A Topology object]

topology module

Basic functions and classes for operating on network topologies.

fan_in_out_capacities(topology) Calculate fan-in and fan-out capacities for all nodes of
the topology.

od_pairs_from_topology(topology) Calculate all possible origin-destination pairs of the
topology.

rename_edge_attribute(topology, old_attr, . . .) Rename all edges attributes with a specific name to a
new name

rename_node_attribute(topology, old_attr, . . .) Rename all nodes attributes with a specific name to a
new name

read_topology(path[, encoding]) Read a topology from an XML file and returns either a
Topology or a DirectedTopology object

write_topology(topology, path[, encoding, . . .]) Write a topology object on an XML file

fnss.topologies.topology.fan_in_out_capacities

fan_in_out_capacities(topology)
Calculate fan-in and fan-out capacities for all nodes of the topology.

The fan-in capacity of a node is the sum of capacities of all incoming links, while the fan-out capacity is the
sum of capacities of all outgoing links.

Parameters

topology [Topology] The topology object whose fan-in and fan-out capacities are calculated.
This topology must be annotated with link capacities.

Returns

fan_in_out_capacities [tuple (fan_in, fan_out)] A tuple of two dictionaries, representing, re-
spectively the fan-in and fan-out capacities keyed by node.

Notes

This function works correctly for both directed and undirected topologies. If the topology is undirected, the
returned dictionaries of fan-in and fan-out capacities are identical.

Examples

>>> import fnss
>>> topology = fnss.star_topology(3)
>>> fnss.set_capacities_constant(topology, 10, 'Mbps')
>>> in_cap, out_cap = fnss.fan_in_out_capacities(topology)
>>> in_cap
{0: 30, 1: 10, 2: 10, 3: 10}
>>> out_cap
{0: 30, 1: 10, 2: 10, 3: 10}

48 Chapter 1. Contents

FNSS core library, Release 0.8.2

fnss.topologies.topology.od_pairs_from_topology

od_pairs_from_topology(topology)
Calculate all possible origin-destination pairs of the topology. This function does not simply calculate all possi-
ble pairs of the topology nodes. Instead, it only returns pairs of nodes connected by at least a path.

Parameters

topology [Topology or DirectedTopology] The topology whose OD pairs are calculated

Returns

od_pair [list] List containing all origin destination tuples.

Examples

>>> import fnss
>>> topology = fnss.ring_topology(3)
>>> fnss.od_pairs_from_topology(topology)
[(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]

fnss.topologies.topology.rename_edge_attribute

rename_edge_attribute(topology, old_attr, new_attr)
Rename all edges attributes with a specific name to a new name

Parameters

topology [Topology] The topology object

old_attr [any hashable type] Old attribute name

new_attr [any hashable type] New attribute name

fnss.topologies.topology.rename_node_attribute

rename_node_attribute(topology, old_attr, new_attr)
Rename all nodes attributes with a specific name to a new name

Parameters

topology [Topology] The topology object

old_attr [any hashable type] Old attribute name

new_attr [any hashable type] New attribute name

fnss.topologies.topology.read_topology

read_topology(path, encoding=’utf-8’)
Read a topology from an XML file and returns either a Topology or a DirectedTopology object

Parameters

path [str] The path of the topology XML file to parse

encoding [str, optional] The encoding of the file

1.3. API Reference 49

FNSS core library, Release 0.8.2

Returns

topology: Topology or DirectedTopology The parsed topology

fnss.topologies.topology.write_topology

write_topology(topology, path, encoding=’utf-8’, prettyprint=True)
Write a topology object on an XML file

Parameters

topology [Topology] The topology object to write

path [str] The file ob which the topology will be written

encoding [str, optional] The encoding of the target file

prettyprint [bool, optional] Indent the XML code in the output file

1.3.2.4 adapters package

autonetkit module

Adapter for AutoNetkit.

This module contains function for converting FNSS Topology objects into NetworkX graph objects compatible with
AutoNetKit and viceversa.

from_autonetkit(topology) Convert an AutoNetKit graph into an FNSS Topology
object.

to_autonetkit(topology) Convert an FNSS topology into a NetworkX graph ob-
ject compatible for AutoNetKit.

fnss.adapters.autonetkit.from_autonetkit

from_autonetkit(topology)
Convert an AutoNetKit graph into an FNSS Topology object.

The current implementation of this function only renames the weight attribute from weight to ospf_cost

Parameters

topology [NetworkX graph] An AutoNetKit NetworkX graph

Returns

fnss_topology [FNSS Topology] FNSS topology

fnss.adapters.autonetkit.to_autonetkit

to_autonetkit(topology)
Convert an FNSS topology into a NetworkX graph object compatible for AutoNetKit.

The returned graph can be saved into a GraphML file using NetworkX write_graphml function and then passed
to AutoNetKit as command line parameter.

50 Chapter 1. Contents

FNSS core library, Release 0.8.2

The current implementation of this function only renames the weight attribute from weight to ospf_cost

Parameters

topology [FNSS Topology] Autonetkit topology object

Returns

ank_graph [FNSS topology] an FNSS topology compatible for import to AutoNetKit

jfed module

Adapter for jFed

Provides function to convert an FNSS Topology object into a jFed rspec file and viceversa.

jFed <http://jfed.iminds.be/>_ is a Java-based framework to support the integration of federated testbed, developed
by iMinds <http://www.iminds.be/>_ in the contex of the Fed4FIRE <http://www.fed4fire.eu/>_ project funded by the
Framework Programme 7 (FP7) of the European Union.

from_jfed(path) Read a jFed RSPEC file and returns an FNSS topology
modelling the network topology of the jFed experiment
specification.

to_jfed(topology, path[, testbed, encoding, . . .]) Convert a topology object into an RSPEC file for jFed

fnss.adapters.jfed.from_jfed

from_jfed(path)
Read a jFed RSPEC file and returns an FNSS topology modelling the network topology of the jFed experiment
specification.

Parameters

path [str] The path of the jFed RSPEC file to parse

Returns

topology: Topology The parsed topology

Notes

This function does not support directed topologies and unidirectional links

It is possible in jFed to create multipoint links (links with more than 2 endpoints). Such types of link cannot be
modelled in FNSS. Therefore, any attempt to convert an RSPEC with such links will fail.

fnss.adapters.jfed.to_jfed

to_jfed(topology, path, testbed=’wall1.ilabt.iminds.be’, encoding=’utf-8’, prettyprint=True)
Convert a topology object into an RSPEC file for jFed

Parameters

topology [Topology] The topology object

path [str] The file to which the RSPEC will be written

1.3. API Reference 51

FNSS core library, Release 0.8.2

testbed [str, optional] URI of the testbed to use

encoding [str, optional] The encoding of the target file

prettyprint [bool, optional] Indent the XML code in the output file

Notes

It currently supports only undirected topologies, if a topology is directed it is converted to undirected

mn module

Adapter for Mininet.

This module contains function to convert FNSS topologies into Mininet topologies and viceversa.

from_mininet(topology) Convert a Mininet topology to an FNSS one.
to_mininet(topology[, switches, hosts, . . .]) Convert an FNSS topology to Mininet Topo object that

can be used to deploy a Mininet network.

fnss.adapters.mn.from_mininet

from_mininet(topology)
Convert a Mininet topology to an FNSS one.

Parameters

topology [Mininet Topo] A Mininet topology object

Returns

topology [Topology] An FNSS Topology object

fnss.adapters.mn.to_mininet

to_mininet(topology, switches=None, hosts=None, relabel_nodes=True)
Convert an FNSS topology to Mininet Topo object that can be used to deploy a Mininet network.

If the links of the topology are labeled with delays, capacities or buffer sizes, the returned Mininet topology will
also include those parameters.

However, it should be noticed that buffer sizes are included in the converted topology only if they are expressed
in packets. If buffer sizes are expressed in the form of bytes they will be discarded. This is because Mininet
only supports buffer sizes expressed in packets.

Parameters

topology [Topology, DirectedTopology or DatacenterTopology] An FNSS Topology object

switches [list, optional] List of topology nodes acting as switches

hosts [list, optional] List of topology nodes acting as hosts

relabel_nodes [bool, optional] If True, rename node labels according to Mininet conventions.
In Mininet all node labels are strings whose values are “h1”, “h2”, . . . if the node is a host
or “s1”, “s2”, . . . if the node is a switch.

52 Chapter 1. Contents

https://github.com/mininet/mininet/wiki/Introduction-to-Mininet#naming-in-mininet

FNSS core library, Release 0.8.2

Returns

topology [Mininet Topo] A Mininet topology object

Notes

It is not necessary to provide a list of switch and host nodes if the topology object provided are already annotated
with a type attribute that can have values host or switch. This is the case of datacenter topologies generated with
FNSS which already include information about which nodes are hosts and which are switches.

If switches and hosts are passed as arguments, then the hosts and switches sets must be disjoint and their union
must coincide to the set of all topology nodes. In other words, there cannot be nodes labeled as both host and
switch and there cannot be nodes that are neither a host nor a switch.

It is important to point out that if the topology contains loops, it will not work with the ovs-controller and
controller provided by Mininet. It will be necessary to use custom controllers. Further info here.

ns2 module

Adapter for ns-2.

This module contains the code for converting an FNSS topology object into a Tcl script to deploy such topology into
ns-2.

to_ns2(topology, path[, stacks]) Convert topology object into an ns-2 Tcl script that de-
ploys that topology into ns-2.

validate_ns2_stacks(topology) Validate whether the stacks and applications of a topol-
ogy are valid for ns-2 deployment

fnss.adapters.ns2.to_ns2

to_ns2(topology, path, stacks=True)
Convert topology object into an ns-2 Tcl script that deploys that topology into ns-2.

Parameters

topology [Topology] The topology object to convert

path [str] The path to the output Tcl file

stacks [bool, optional] If True, read the stacks on nodes and write them into the output file.
For this to work, stacks must be formatted in a way understandable by ns-2. For example,
stack and applications must have a ‘class’ attribute whose value is the name of the ns-2 class
implementing it.

Notes

In order for the function to parse stacks correctly, the input topology must satisfy the following requirements:

• each stack and each application must have a class attribute whose value is the ns-2 class implementing
such stack or application, such as Agent/TCP or Application/FTP.

• All names and values of stack and application properties must be valid properties recognized by the ns-2
application or protocol stack.

1.3. API Reference 53

https://github.com/mininet/mininet/wiki/Introduction-to-Mininet#multipath-routing

FNSS core library, Release 0.8.2

fnss.adapters.ns2.validate_ns2_stacks

validate_ns2_stacks(topology)
Validate whether the stacks and applications of a topology are valid for ns-2 deployment

Parameters

topology [Topology] The topology object to validate

Returns

valid [bool] True if stacks are valid ns-2 stacks, False otherwise

omnetpp module

Omnet++ adapter

This module contains the code for converting an FNSS topology object into a NED script to deploy such topology into
Omnet++.

to_omnetpp(topology[, path]) Convert an FNSS topology into an Omnet++ NED
script.

fnss.adapters.omnetpp.to_omnetpp

to_omnetpp(topology, path=None)
Convert an FNSS topology into an Omnet++ NED script.

Parameters

topology [Topology] The topology object to convert

path [str, optional] The path to the output NED file. If not specified, prints to standard output

1.3.3 Scripts

1.3.3.1 mn-fnss

Usage:

mn-fnss [mn-options] [--no-relabel] <topology-file>
mn-fnss (--help | -h)
mn-fnss (--version | -v)

Options:

mn-options Mininet mn options.
--no-relabel Do not relabel topology nodes to Mininet conventions.
-h --help Show help.
-v --version Show version.

Launch Mininet console with an FNSS topology.

This script parses an FNSS topology XML file and launches the Mininet console passing this topology.

54 Chapter 1. Contents

FNSS core library, Release 0.8.2

This script accepts all the options of Mininet mn script, except for the custom and topo options which are overwritten
by this script.

In addition, if the user specifies the mn link option, then all potential link attributes of the topology (e.g. capacity,
delay and max queue size) are discarded and values provided with the link attributes are used instead.

Unless the option –no-relabel is provided, this script relabels all nodes of the FNSS topology to match Mininet’s
conventions, i.e. each host label starts with h (e.g. h1, h2, h3. . .) and each switch label starts with s (e.g. s1, s2, s3. . .).

Unless used to print this help message or version information, this script must be run as superuser.

Example usage:

$ python
>>> import fnss
>>> topo = fnss.two_tier_topology(1, 2, 2)
>>> fnss.write_topology(topo, 'fnss-topo.xml')
$ sudo mn-fnss fnss-topo.xml

1.3.3.2 fnss-troubleshoot

Usage:

fnss-troubleshoot [--help | -h]

This script prints debugging information about FNSS dependencies currently installed.

The main purpose of this script is to help users to communicate effectively with developers when reporting an issue.

1.3. API Reference 55

FNSS core library, Release 0.8.2

56 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

57

FNSS core library, Release 0.8.2

58 Chapter 2. Indices and tables

Bibliography

[3] Nucci et al., The problem of synthetically generating IP traffic matrices: initial recommendations, ACM SIG-
COMM Computer Communication Review, 35(3), 2005

[1] Nucci et al., The problem of synthetically generating IP traffic matrices: initial recommendations, ACM SIG-
COMM Computer Communication Review, 35(3), 2005

[2] Nucci et al., The problem of synthetically generating IP traffic matrices: initial recommendations, ACM SIG-
COMM Computer Communication Review, 35(3), 2005

[1] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu. BCube: a high performance,
host-centric network architecture for modular data centers. Proceedings of the ACM SIGCOMM 2009 confer-
ence on Data communication (SIGCOMM ‘09). ACM, New York, NY, USA. http://doi.acm.org/10.1145/1592568.
1592577

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center network architecture. Proceedings
of the ACM SIGCOMM 2008 conference on Data communication (SIGCOMM ‘08). ACM, New York, NY, USA
http://doi.acm.org/10.1145/1402958.1402967

[1] A. L. Barabasi and R. Albert “Emergence of scaling in random networks”, Science 286, pp 509-512, 1999.

[1] 16. Erdos and A. Renyi, On Random Graphs, Publ. Math. 6, 290 (1959).

[2] 5. (n) Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).

[3] Vladimir Batagelj and Ulrik Brandes, “Efficient generation of large random networks”, Phys. Rev. E, 71, 036113,
2005.

[1] A. L. Barabasi and R. Albert “Topology of evolving networks: local events and universality”, Physical Review
Letters 85(24), 2000.

[1] T. Bu and D. Towsey “On distinguishing between Internet power law topology generators”, Proceeding od the
21st IEEE INFOCOM conference. IEEE, volume 2, pages 638-647, 2002.

[1] B. M. Waxman, Routing of multipoint connections. IEEE J. Select. Areas Commun. 6(9),(1988) 1617-1622.

[1] B. M. Waxman, Routing of multipoint connections. IEEE J. Select. Areas Commun. 6(9),(1988) 1617-1622.

[1] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek, H. Balakrishnan, Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications. Proceedings of the ACM SIGCOMM 2001 conference on Data communication
(SIGCOMM ‘09). ACM, New York, NY, USA.

59

http://doi.acm.org/10.1145/1592568.1592577
http://doi.acm.org/10.1145/1592568.1592577
http://doi.acm.org/10.1145/1402958.1402967

FNSS core library, Release 0.8.2

60 Bibliography

Python Module Index

f
fnss.adapters.autonetkit, 50
fnss.adapters.jfed, 51
fnss.adapters.mn, 52
fnss.adapters.ns2, 53
fnss.adapters.omnetpp, 54
fnss.netconfig.buffers, 12
fnss.netconfig.capacities, 15
fnss.netconfig.delays, 20
fnss.netconfig.nodeconfig, 22
fnss.netconfig.weights, 25
fnss.topologies.datacenter, 33
fnss.topologies.parsers, 36
fnss.topologies.randmodels, 41
fnss.topologies.simplemodels, 45
fnss.topologies.topology, 48
fnss.traffic.eventscheduling, 27
fnss.traffic.trafficmatrices, 29

61

FNSS core library, Release 0.8.2

62 Python Module Index

Index

A
add_application() (in module fnss.netconfig.nodeconfig),

23
add_stack() (in module fnss.netconfig.nodeconfig), 23

B
barabasi_albert_topology() (in module

fnss.topologies.randmodels), 41
bcube_topology() (in module fnss.topologies.datacenter),

34

C
chord_topology() (in module

fnss.topologies.simplemodels), 45
clear_applications() (in module

fnss.netconfig.nodeconfig), 23
clear_buffer_sizes() (in module fnss.netconfig.buffers),

12
clear_capacities() (in module fnss.netconfig.capacities),

15
clear_delays() (in module fnss.netconfig.delays), 21
clear_stacks() (in module fnss.netconfig.nodeconfig), 23
clear_weights() (in module fnss.netconfig.weights), 25

D
DatacenterTopology (class in fnss.topologies.datacenter),

9
deterministic_process_event_schedule() (in module

fnss.traffic.eventscheduling), 27
DirectedTopology (class in fnss.topologies.topology), 7
dumbbell_topology() (in module

fnss.topologies.simplemodels), 46

E
erdos_renyi_topology() (in module

fnss.topologies.randmodels), 42
EventSchedule (class in fnss.traffic.eventscheduling), 12
extended_barabasi_albert_topology() (in module

fnss.topologies.randmodels), 42

F
fan_in_out_capacities() (in module

fnss.topologies.topology), 48
fat_tree_topology() (in module

fnss.topologies.datacenter), 34
fnss.adapters.autonetkit (module), 50
fnss.adapters.jfed (module), 51
fnss.adapters.mn (module), 52
fnss.adapters.ns2 (module), 53
fnss.adapters.omnetpp (module), 54
fnss.netconfig.buffers (module), 12
fnss.netconfig.capacities (module), 15
fnss.netconfig.delays (module), 20
fnss.netconfig.nodeconfig (module), 22
fnss.netconfig.weights (module), 25
fnss.topologies.datacenter (module), 33
fnss.topologies.parsers (module), 36
fnss.topologies.randmodels (module), 41
fnss.topologies.simplemodels (module), 45
fnss.topologies.topology (module), 48
fnss.traffic.eventscheduling (module), 27
fnss.traffic.trafficmatrices (module), 29
from_autonetkit() (in module fnss.adapters.autonetkit),

50
from_jfed() (in module fnss.adapters.jfed), 51
from_mininet() (in module fnss.adapters.mn), 52
full_mesh_topology() (in module

fnss.topologies.simplemodels), 46

G
get_application_names() (in module

fnss.netconfig.nodeconfig), 24
get_application_properties() (in module

fnss.netconfig.nodeconfig), 24
get_buffer_sizes() (in module fnss.netconfig.buffers), 13
get_capacities() (in module fnss.netconfig.capacities), 15
get_delays() (in module fnss.netconfig.delays), 21
get_stack() (in module fnss.netconfig.nodeconfig), 24
get_weights() (in module fnss.netconfig.weights), 25

63

FNSS core library, Release 0.8.2

glp_topology() (in module fnss.topologies.randmodels),
43

K
k_ary_tree_topology() (in module

fnss.topologies.simplemodels), 47

L
line_topology() (in module

fnss.topologies.simplemodels), 47
link_loads() (in module fnss.traffic.trafficmatrices), 29

O
od_pairs_from_topology() (in module

fnss.topologies.topology), 49

P
parse_abilene() (in module fnss.topologies.parsers), 36
parse_ashiip() (in module fnss.topologies.parsers), 37
parse_brite() (in module fnss.topologies.parsers), 37
parse_caida_as_relationships() (in module

fnss.topologies.parsers), 37
parse_inet() (in module fnss.topologies.parsers), 38
parse_rocketfuel_isp_latency() (in module

fnss.topologies.parsers), 39
parse_rocketfuel_isp_map() (in module

fnss.topologies.parsers), 38
parse_topology_zoo() (in module

fnss.topologies.parsers), 40
poisson_process_event_schedule() (in module

fnss.traffic.eventscheduling), 28

R
read_event_schedule() (in module

fnss.traffic.eventscheduling), 28
read_topology() (in module fnss.topologies.topology), 49
read_traffic_matrix() (in module

fnss.traffic.trafficmatrices), 30
remove_application() (in module

fnss.netconfig.nodeconfig), 24
remove_stack() (in module fnss.netconfig.nodeconfig), 25
rename_edge_attribute() (in module

fnss.topologies.topology), 49
rename_node_attribute() (in module

fnss.topologies.topology), 49
ring_topology() (in module

fnss.topologies.simplemodels), 47

S
set_buffer_sizes_bw_delay_prod() (in module

fnss.netconfig.buffers), 13
set_buffer_sizes_constant() (in module

fnss.netconfig.buffers), 13

set_buffer_sizes_link_bandwidth() (in module
fnss.netconfig.buffers), 14

set_capacities_betweenness_gravity() (in module
fnss.netconfig.capacities), 16

set_capacities_communicability_gravity() (in module
fnss.netconfig.capacities), 16

set_capacities_constant() (in module
fnss.netconfig.capacities), 16

set_capacities_degree_gravity() (in module
fnss.netconfig.capacities), 17

set_capacities_edge_betweenness() (in module
fnss.netconfig.capacities), 17

set_capacities_edge_communicability() (in module
fnss.netconfig.capacities), 17

set_capacities_eigenvector_gravity() (in module
fnss.netconfig.capacities), 18

set_capacities_pagerank_gravity() (in module
fnss.netconfig.capacities), 18

set_capacities_random() (in module
fnss.netconfig.capacities), 18

set_capacities_random_power_law() (in module
fnss.netconfig.capacities), 19

set_capacities_random_uniform() (in module
fnss.netconfig.capacities), 19

set_capacities_random_zipf() (in module
fnss.netconfig.capacities), 19

set_capacities_random_zipf_mandelbrot() (in module
fnss.netconfig.capacities), 20

set_delays_constant() (in module fnss.netconfig.delays),
21

set_delays_geo_distance() (in module
fnss.netconfig.delays), 22

set_weights_constant() (in module
fnss.netconfig.weights), 26

set_weights_delays() (in module fnss.netconfig.weights),
26

set_weights_inverse_capacity() (in module
fnss.netconfig.weights), 27

sin_cyclostationary_traffic_matrix() (in module
fnss.traffic.trafficmatrices), 30

star_topology() (in module
fnss.topologies.simplemodels), 47

static_traffic_matrix() (in module
fnss.traffic.trafficmatrices), 31

stationary_traffic_matrix() (in module
fnss.traffic.trafficmatrices), 32

T
three_tier_topology() (in module

fnss.topologies.datacenter), 35
to_autonetkit() (in module fnss.adapters.autonetkit), 50
to_jfed() (in module fnss.adapters.jfed), 51
to_mininet() (in module fnss.adapters.mn), 52
to_ns2() (in module fnss.adapters.ns2), 53

64 Index

FNSS core library, Release 0.8.2

to_omnetpp() (in module fnss.adapters.omnetpp), 54
Topology (class in fnss.topologies.topology), 6
TrafficMatrix (class in fnss.traffic.trafficmatrices), 11
TrafficMatrixSequence (class in

fnss.traffic.trafficmatrices), 11
two_tier_topology() (in module

fnss.topologies.datacenter), 36

V
validate_ns2_stacks() (in module fnss.adapters.ns2), 54
validate_traffic_matrix() (in module

fnss.traffic.trafficmatrices), 33

W
waxman_1_topology() (in module

fnss.topologies.randmodels), 44
waxman_2_topology() (in module

fnss.topologies.randmodels), 44
write_event_schedule() (in module

fnss.traffic.eventscheduling), 28
write_topology() (in module fnss.topologies.topology),

50
write_traffic_matrix() (in module

fnss.traffic.trafficmatrices), 33

Index 65

	Contents
	Architecture
	Install
	Quick install
	Ubuntu (version 12.04+)
	Other operating systems

	Installing from source
	Source archive file
	Git repository

	Requirements
	Python
	Required packages

	API Reference
	Classes
	Topology
	DirectedTopology
	DatacenterTopology
	TrafficMatrix
	TrafficMatrixSequence
	EventSchedule

	Functions
	netconfig package
	traffic package
	topologies package
	adapters package

	Scripts
	mn-fnss
	fnss-troubleshoot

	Indices and tables
	Bibliography
	Python Module Index

